Advertisement

Silicon

pp 1–11 | Cite as

Air Jet Erosion Studies on Mg/SiC Composite

  • K. Balamurugan
  • M. UthayakumarEmail author
  • M. Ramakrishna
  • U. T. S. Pillai
Original Paper
  • 16 Downloads

Abstract

Magnesium with 10% SiC is identified to be a suitable composition for wear resistance application. To improve the utilization of this composite for various industrial applications, erosion study has been conducted by using air jet erosion tester with varied machining conditions. The composite is prepared by a conventional stir casting process. Alumina is taken as an erodent particle. Impact angle, erosion velocity, and discharge rate are taken as the governing parameters of erosion rate. Lower impact angle and high erodent velocity yield to have a high erosion rate of 0.022 g/min with the least surface finish of 1.48 μm. Erosion velocity is found to have a significant effect of 59% over the other considered parameters. Further, the analysis of the surface profile parameters likely; Ssk, Sku, Sp, Sv, and Sa on the machined surface reveals the mechanism of the material removal and also, the surface defects are analyzed by using SEM image.

Keywords

Mg/SiC composite Air jet erosion Impact angle Erodent velocity Surface profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Viswanath A, Dieringa H, Ajit Kumar KK, Pillai UTS, Pai BC (2015) Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites. J Magnes Alloy 3:16–22CrossRefGoogle Scholar
  2. 2.
    Kumar PS, Viswanath A, Ajith Kumar KK, Rajan TPD, Pillai UTS, Pai BC (2013) Sliding Wear behavior of stir cast AZ91/ SiCp composites. J Solid Mech Mater Eng 7:169–175Google Scholar
  3. 3.
    Vishwas DK, Chandrappa CN, Venkatesh S (2018) Study on erosion behaviour of hybrid aluminium composite. AIP Conf Proc 1943:020121CrossRefGoogle Scholar
  4. 4.
    Gousia V, Tsioukis A, Lekatou A, Karantzalis AE (2016) Al-MoSi2 composite materials: analysis of microstructure, sliding Wear, solid particle Erosion, and aqueous corrosion. J Mater Eng Perform 25:3107–3120CrossRefGoogle Scholar
  5. 5.
    Patel M, Patel D, Sekar S, Tailor PB, Ramana PV (2016) Study of solid particle Erosion behaviour of SS 304 at room temperature. Procedia Technology 23:288–295CrossRefGoogle Scholar
  6. 6.
    Sharma SK, Kumar BVM, Kim YM (2017) Effect of impingement angle and WC content on high temperature erosion behavior of SiC-WC composites. Int J Refract Met Hard Mater 68:166–171CrossRefGoogle Scholar
  7. 7.
    Khan MM, Dixit G (2017) Abrasive Wear characteristics of silicon carbide particle reinforced zinc based composite. Silicon 10:1315–1327CrossRefGoogle Scholar
  8. 8.
    Mamatha TG, Patnaik A, Biswas S, Kumar P (2011) Finite element modelling and development of SiC-filled ZA-27 alloy composites in erosive wear environment: a comparative analysis. Proc Inst Mech Eng Part J J Eng Tribology 225:1106–1120CrossRefGoogle Scholar
  9. 9.
    Chowdhury MA, Debnath UK, Nuruzzaman DM, Islam MM (2015) Experimental evaluation of erosion of gunmetal under asymmetrical shaped sand particle. Adv Tribal 215:1–31.  https://doi.org/10.1155/2015/815179
  10. 10.
    Rosa CSL, Vite-Torres M, Gallardo-Hernandez EA, Laguna-Camacho JR, Godinez-Salcedo JG, Farfan-Cabrera LI (2017) Effect of tangential velocity on erosion of ASTM A-106 grade B steel pipe under turbulent swirling impinging jet. Tribol Int 113:500–506CrossRefGoogle Scholar
  11. 11.
    Khan MM, Dixit G (2019) Evaluation of microstructure, mechanical, thermal and erosive Wear behavior of aluminum-based composites. Silicon.  https://doi.org/10.1007/s12633-019-00099-4
  12. 12.
    Miyazaki N (2016) Solid particle erosion of composite materials: a critical review. J Compos Mater 50:1–43.  https://doi.org/10.1177/0021998315617818
  13. 13.
    Yang JZ, Tsioukis A, Lekatou A, Karantzalis AE (2016) Al-MoSi2 composite materials: analysis of microstructure, slding wear, solid particle erosion, and aqueous corrosion. J Mater Eng Perform 25:3107–3120CrossRefGoogle Scholar
  14. 14.
    Ruslan M, Fengzhou F (2019) Investigation of erosion temperature in micro-blasting. Wear 420/421:123–132.  https://doi.org/10.1016/j.wear.2018.12.073 CrossRefGoogle Scholar
  15. 15.
    Krolczyk GM, Krolczyk JB, Maruda RW, Legutko S, Tomaszewski M (2016) Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement 88:176–185CrossRefGoogle Scholar
  16. 16.
    Krolczyk GM, Maruda RW, Krolczyk JW, Nieslony P, Wojciechowski S, Legutko S (2018) Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121:225–239CrossRefGoogle Scholar
  17. 17.
    Bata E, Lentzaris K, Lekatou AG, Barkoula NM, Poulia A (2017) Effect of solid particle Erosion on the aqueous corrosion behaviour of a Ti6Al4V sheet. Mater. Sci. Eng. Adv. Res 26–33  https://doi.org/10.24218/msear.2017.4S, Special Issue
  18. 18.
    Avcu E, Fidan S, Yıldıran Y, Sınmazcelik T (2013) Solid particle erosion behaviour of Ti6Al4V alloy. Tribol Mater Surf Interfaces 7:201–210CrossRefGoogle Scholar
  19. 19.
    Kaplan M, Uyaner M, Avcu M, Avcu YY and Karaoglanli AC (2018) Solid particle erosion behavior of thermal barrier coatings produced by atmospheric plasma spray technique, Mech Adv Mater Struct,  https://doi.org/10.1080/15376494.4712018.1444221
  20. 20.
    Sedlacek M, Gregorcic P, Podgornik B (2017) Use of the roughness parameters Ssk and Sku to control friction—a method for designing surface texturing. Tribol Trans 60:260–226CrossRefGoogle Scholar
  21. 21.
    Xie J, Rittel D (2018) The effects of waterjet peening on a random-topography metallic implant surface. Eur J Mech A Solids 71:235–244CrossRefGoogle Scholar
  22. 22.
    Chowdhury MA, Debnath UK, Nuruzzaman DM, Islam MM (2015) Erosion of mild steel for engineering design and applications. J. Bio-Tribo-Corros 3:34–51.  https://doi.org/10.1007/s40735-017-0094-z
  23. 23.
    Srivastava VK (2006) Effects of wheat starch on erosive wear of E-glass fibre reinforced epoxy resin composite materials. Mater Sci Eng A 435/436:282–287CrossRefGoogle Scholar
  24. 24.
    Alam T, Farhat ZN (2017) Slurry erosion surface damage under normal impact for pipeline steels. Eng Fail Anal 90:116–128.  https://doi.org/10.1016/j.engfailanal.2018.03.019 CrossRefGoogle Scholar
  25. 25.
    Hutchings IM (1992) Tribology: friction and Wear of engineering materials. Edward Arnold, UKGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • K. Balamurugan
    • 1
  • M. Uthayakumar
    • 2
    Email author
  • M. Ramakrishna
    • 1
  • U. T. S. Pillai
    • 3
  1. 1.Department of Mechanical EngineeringVFSTR (Deemed to be University)GunturIndia
  2. 2.Faculty of Mechanical EngineeringKalasalingam UniversityKrishnankoilIndia
  3. 3.Material Science and Technology DivisionCSIR – National Institute for Interdisciplinary Science and TechnologyThiruvananthapuramIndia

Personalised recommendations