Advertisement

Silicon

pp 1–7 | Cite as

Crystallization of P Type Amorphous Silicon (a-Si: H) by AIC Method: Effect of Aluminum Thickness

  • Faouzi KezzoulaEmail author
  • Mohamed Kechouane
  • Tayeb Mohammed-Brahim
  • Hamid Menari
Original Paper
  • 9 Downloads

Abstract

In this work, we will study the crystallization of P type hydrogenated amorphous silicon (a-Si:H) by Aluminum Induced Crystallization technique (CIA) by varying the thickness of the aluminum films. We have deposited a 100 nm thickness of p-type a-Si:H layer on Corning glass substrates using PECVD technique. An aluminum layer with thickness ranging from 10 to 400 nm was thermally evaporated on the a-Si:H surface. The thermal annealing was performed in a conventional furnace at temperature of 550 °C for 4 h in flowing N2 ambient. The study of the crystallization of the Al/a-Si:H/Glass structure according the aluminum thickness was carried out by using Raman spectroscopy, X-rays diffraction and Hall Effect measurements. Raman results reveal the presence of the peaks between 510 and 520 cm−1, which are close to the peak of crystallized Si (about 521 cm−1) proving the crystallization of all samples. The XRD measurements show the presence of the characteristic peaks of the crystalline silicon, thus the a-Si: H (p) layer was effectively crystallized by the AIC method in a short time. Through Hall measurements we found an improvement in electrical properties and an increase in dopant concentration (+ 5.3 1014 to + 2.9 1017 cm2).

Keywords

Hydrogenated amorphous silicon (a-Si: H) Aluminum induced crystallization (AIC) PECVD Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Funds National of Research: DGRSDT/MESRS (Algeria) and C.R.T.S.E Center of Research.

References

  1. 1.
    Crowder MA, Moriguchi M, Mitani Y, Voutsas AT (2003). Thin Solid Films 427:101–107Google Scholar
  2. 2.
    Carnel L, Gordon I, van Gestel D, van Nieuwenhuysen K, Agostinelli G, Beaucarne G, Poortmans J (2006). Thin Solid Films 511–512:21–25Google Scholar
  3. 3.
    Nguyen TN, SungwookJung Y (2009). J Korean Phys Soc 54(6):2367–2372CrossRefGoogle Scholar
  4. 4.
    Vidhya EB, Vasa NJ (2016). Procedia Manufacturing 5:734–746Google Scholar
  5. 5.
    Chen I-C, Lin P-Y, Li TT, Chang J-Y (2014) Kinetic Study of the Thermal Crystallization Behavior of Hydrogenated Amorphous Silicon Prepared by ECRCVD. J Solid State Sci Technol 3(5):N75–N82CrossRefGoogle Scholar
  6. 6.
    Shekoofa O, Wang J, Li D, Luo Y, Sun C, ZhibiaoHao YH, Xiong B, Wang L, Li H (2017) P-silicon thin film fabricated by magnetron sputtering and aluminium induced crystallization for Schottky silicon solar cells. Mater Sci Semicond Process 71:366–373CrossRefGoogle Scholar
  7. 7.
    Lee KH, Fang YK, Fan SH (1999) Au metal-induced lateral crystallisation (MILC) of hydrogenated amorphous silicon thin film with very low annealing temperature and fast MILC rate. Electron Lett 35:1108CrossRefGoogle Scholar
  8. 8.
    Widenborg PI, Aberle AG (2002) Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates. J Cryst Growth 242:270–282CrossRefGoogle Scholar
  9. 9.
    Saito N, Tomioka Y, Senda H, Yamaguchi T, Kawamura K (1990) Philos Mag B 62(5)Google Scholar
  10. 10.
    Qi GJ, Zhang S, Tang TT, Li JF, Sun XW, Zeng XT (2005) Experimental study of aluminum-induced crystallization of amorphous silicon thin films. Surf Coat Technol 198:300–303CrossRefGoogle Scholar
  11. 11.
    Peng CC, Chung CK, Lin JF (2011) Effects of Al film thickness and annealing temperature on the aluminum-induced crystallization of amorphous silicon and carrier mobility. Acta Mater 59:6093–6102CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Wang J, Hu Q, Li D (2010) Crystallization of sputtered amorphous silicon induced by silver–copper alloy with high crystalline volumeratio. J Cryst Growth 312:3599–3602CrossRefGoogle Scholar
  13. 13.
    Swain BP, Hwang NM (2009) Effect of negative substrate bias on HWCVD deposited nanocrystalline silicon (nc-Si) films. Solid State Sci 11:467–471CrossRefGoogle Scholar
  14. 14.
    Jung M, Okada A, Saito T, Suemasu T, Usami N (2010) On the Controlling Mechanism of Preferential Orientation of Polycrystalline-Silicon Thin Films Grown by Aluminum-Induced Crystallization. Appl Phys Express 3:095803CrossRefGoogle Scholar
  15. 15.
    Herd SR, Chaudhari P, Brodsky MH (1972) Metal contact induced crystallization in films of amorphous silicon and germanium. J Non-Cryst Solids 7(4):309–327CrossRefGoogle Scholar
  16. 16.
    Goncalves C, Charvet S, Zeinert A, Clin M, Zellama K (2002). Thin Solid Films 403:91CrossRefGoogle Scholar
  17. 17.
    Baghdad R, Benlakehal D, Portier X, Zellama K, Charvet S, Sib JD, Clin M, Chahed L (2008). Thin Solid Films 516:3965CrossRefGoogle Scholar
  18. 18.
    Shekoofa O, Wang J, Li D, Luo Y, Sun C, Hao Z, Han Y, Xiong B, Wang L, Li H (2018) Nano-crystalline thin films fabricated by Si-Al co-sputtering and metal induced crystallization for photovoltaic applications. Sol Energy 173:539–550CrossRefGoogle Scholar
  19. 19.
    Matsumoto Y, Zhenrui YU (2001). Jpn J Appl Phys 40:2110–2114CrossRefGoogle Scholar
  20. 20.
    Lin GH, Kapur M, Bockris JOM (1992) Modification of the optical properties of hydrogenated amorphous silicon by alloying with Al, Ga and S. Sol Energy Mater Sol Cells 28:29–48CrossRefGoogle Scholar
  21. 21.
    Wu B-R, Lo S-Y, Wuu D-S, Ou S-L, Mao H-Y, Wang J-H, Horng R-H (2012) Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition. Thin Solid Films 520:5860–5866CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Faouzi Kezzoula
    • 1
    Email author
  • Mohamed Kechouane
    • 2
  • Tayeb Mohammed-Brahim
    • 3
  • Hamid Menari
    • 1
  1. 1.CRTSE -Division DDCSAlgiesAlgeria
  2. 2.USTHB, Faculté de Physique, Laboratoire de Physique des MatériauxAlgiersAlgeria
  3. 3.Institut d’Electronique et de Télécommunication de RennesUniversité de Rennes1Rennes CedexFrance

Personalised recommendations