, Volume 12, Issue 1, pp 231–238 | Cite as

Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching

  • Altyeb-Ali-Abaker Omer
  • Yuanyuan Yang
  • Guizhang Sheng
  • Shaoyuan LiEmail author
  • Jie YuEmail author
  • Wenhui Ma
  • Jiajia Qiu
  • Wael El Kolaly
Original Paper


Nano-texturing of a silicon surface has been achieved via one-step copper-assisted chemical etching (CACE), which offers a simple approach for large-scale production of inverted pyramid textured silicon surfaces. The effects of H2O2 concentration, etching time and reaction temperature on the inverted pyramid-like structure and anti-reflective ability were systematically investigated. The results show that the lowest average reflectivity (4.3%) in the wavelength range of 300~1000 nm was obtained under the optimum conditions of 0.06 mol/L copper nitrate, 3 mol/L H2O2 concentration and 2 mol/L hydrofluoric acid (HF) at 60 °C for 5 min. The formation mechanism of the inverted pyramid structure is discussed and can be attributed to the moderate catalytic activity of nanocopper particles that induce etching preferentially along the non-<111 > directions of the silicon. The inverted pyramid structures, with the excellent anti-reflectivity, have potential application in the fabrication of solar cells compatible with the semiconducting industry.


Copper-assisted chemical etching Nano-texturing Silicon wafers Anti-reflection properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support of this work from the National Natural Science Foundation of China (Grant No. 61764009, 51764028, 51762043), Key Project of Yunnan Province Natural Science Fund (2018FA027), Yunnan Youth Fund Project (2016FD037) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).


  1. 1.
    Sica D, Malandrino O, Supino S, Testa M, Lucchetti MC (2018) Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew Sust Energ Rev 82:2934–2945CrossRefGoogle Scholar
  2. 2.
    Z. Ding, X. Zhao, L. L. Shaw, Reaction between LiBH4 and MgH2 induced by high-energy ball milling, 293 (2015) 236–245Google Scholar
  3. 3.
    Yadav TS, Sharma AK, Kottantharayil A, Basu PK (2018) Low-cost and low-temperature chemical oxide passivation process for large area single crystalline silicon solar cells. Sol Energy 169:270–276CrossRefGoogle Scholar
  4. 4.
    Ding Z, Ma W, Wei K, Wu J, Zhou Y, Xie K (2012) Boron removal from metallurgical-grade silicon using lithium containing slag. J Non-Cryst Solids 358:2708–2712CrossRefGoogle Scholar
  5. 5.
    C. Zhang, L. Chen, Y. Zhu, Z. Guan, Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure, 13 (2018) 91Google Scholar
  6. 6.
    Li S, Ma W, Zhou Y, Chen X, Xiao Y, Ma M, Zhu W, Wei F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9:196CrossRefGoogle Scholar
  7. 7.
    C.-H. Li, J.-H. Zhao, X.-Y. Yu, Q.-D. Chen, J. Feng, H.-B. Sun, Fabrication of black silicon with thermostable infrared absorption by femtosecond laser, PP (2016)1–1Google Scholar
  8. 8.
    Cong Zhang SL, Ma W, Ding Z, Wan X, Yang J, Chen Z, Zou Y, Qiu J (2017) Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J Mater Sci Mater Electron 28(12):8510–8518CrossRefGoogle Scholar
  9. 9.
    Zhang C, Chen L, Zhu Y, Guan Z (2018) Fabrication of 20.19% efficient single-crystalline silicon solar cell with inverted pyramid microstructure. Nanoscale Res Lett 13:91CrossRefGoogle Scholar
  10. 10.
    Davidsen RS, Li H, A. To, Wang X, Han A, An J, Colwell J, Chan C, Wenham A, Schmidt MS, Boisen A, Hansen O, Wenham S, Barnett A (2016) Black silicon laser-doped selective emitter solar cell with 18.1% efficiency. Sol Energy Mater Sol Cells 144:740–747CrossRefGoogle Scholar
  11. 11.
    Davidson L, Haque KASME, Toor F (2017) Analytical model for simulating thin-film/wafer-based tandem junction solar cells. Sol Energy 150:287–297CrossRefGoogle Scholar
  12. 12.
    Barrio R, González N, Cárabe J, Gandía JJ (2013) Texturization of silicon wafers with Na2CO3 and Na2CO3/NaHCO3 solutions for heterojunction solar-cell applications. Mater Sci Semicond Process 16:1–9CrossRefGoogle Scholar
  13. 13.
    Yurasov DV, Novikov AV, Shaleev MV, Baidakova NA, Morozova EE, Skorokhodov EV, Ota Y, Hombe A, Kurokawa Y, Usami N (2018) Formation of black silicon using SiGe self-assembled islands as a mask for selective anisotropic etching of silicon. Mater Sci Semicond Process 75:143–148CrossRefGoogle Scholar
  14. 14.
    Hirano T, Nakade K, Li S, Kawai K, Arima K (2018) Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide. Carbon 127:681–687CrossRefGoogle Scholar
  15. 15.
    Zhao J, Wang A, Green MA (2001) High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol Energy Mater Sol Cells 65:429–435CrossRefGoogle Scholar
  16. 16.
    A. Mavrokefalos, S. Eon Han, S. Yerci, M. Branham, G. Chen, Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications, 12 (2012) 2792–2796Google Scholar
  17. 17.
    Lu Y-T BA (2014) Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. Mater Chem A 2:12043–12052CrossRefGoogle Scholar
  18. 18.
    Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X, Yang J, Lei Y, Chen Z (2018) Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation. J Mater Sci Technol 34:2197–2204CrossRefGoogle Scholar
  19. 19.
    L.E.T. Lin J W, Wu C H, Formation of Inverted-Pyramid Structure by Modifing Laser Processing Parameters and Acid Etching Time[C]// ECS Meeting, 35 (31) (2011) 67–72Google Scholar
  20. 20.
    Wang TDY, Chen Q, Liang F, Liu Z (2016) Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology. Nanotechnology 27(25):254005CrossRefGoogle Scholar
  21. 21.
    A. Peter Amalathas, M. Alkaisi, Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography, (2017)1–4Google Scholar
  22. 22.
    Liu J, Zhang X, Sun G, Wang B, Zhang T, Yi F, Liu P (2015) Fabrication of inverted pyramid structure by cesium chloride self-assembly lithography for silicon solar cell. Mater Sci Semicond Process 40:44–49CrossRefGoogle Scholar
  23. 23.
    B. Jiang, M. Li, Y. Liang, Y. Bai, D. Song, Y. Li, J. Luo, Etching anisotropy mechanisms lead to the morphology-controlled silicon nanoporous structures by metal assisted chemical etching, 8 (2016) 1–15Google Scholar
  24. 24.
    Cao M, Li S, Deng J, Li Y, Ma W, Zhou Y (2016) Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution. Appl Surf Sci 372:36–41CrossRefGoogle Scholar
  25. 25.
    X. Geng, Z. Qi, M. Li, B.K. Duan, L. Zhao, P.W. Bohn, Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts, 103 (2012) 98–107Google Scholar
  26. 26.
    Zhang H, Huang J, Wang Y, Liu R, Huai X, Jiang J, Anfuso C (2018) Atomic force microscopy for two-dimensional materials: a tutorial review. Opt Commun 406:3–17CrossRefGoogle Scholar
  27. 27.
    Y. Cao, Y. Zhou, F. Liu, Y. Zhang, Y. Liu, Y. Guo, Progress and Mechanism of Cu Assisted Chemical Etching of Silicon in a Low Cu2+ Concentration Region, 4 (2015) P331-P336Google Scholar
  28. 28.
    Z.P. Huang, N. Geyer, L.F. Liu, M.Y. Li, P. Zhong, Metal-assisted electrochemical etching of silicon, 21 (2010) 465301Google Scholar
  29. 29.
    Liu L, Bao X-Q (2014) Silicon nanowires fabricated by porous gold thin film assisted chemical etching and their photoelectrochemical properties. Mater Lett 125:28–31CrossRefGoogle Scholar
  30. 30.
    Hsu C-H, Wu J-R, Lu Y-T, Flood DJ, Barron AR, Chen L-C (2014) Fabrication and characteristics of black silicon for solar cell applications: An overview. Mater Sci Semicond Process 25:2–17CrossRefGoogle Scholar
  31. 31.
    Backes A, Schmid U (2014) Impact of doping level on the metal assisted chemical etching of p-type silicon. Sensors Actuators B Chem 193:883–887CrossRefGoogle Scholar
  32. 32.
    Abouda Lachiheb M, Zrir MA, Nafie N, Abbes O, Yakoubi J, Bouaïcha M (2014) Investigation of the effectiveness of SiNWs used as an antireflective layer in solar cells. Sol Energy 110:673–683CrossRefGoogle Scholar
  33. 33.
    Geng X, Duan BK, Grismer DA, Zhao L, Bohn PW (2012) Monodisperse GaN nanowires prepared by metal-assisted chemical etching with in situ catalyst deposition. Electrochem Commun 19:39–42CrossRefGoogle Scholar
  34. 34.
    Yang YM, Chu PK, Wu ZW, Pu SH, Hung TF, Huo KF, Qian GX, Zhang WJ, Wu XL (2008) Catalysis of dispersed silver particles on directional etching of silicon. Appl Surf Sci 254:3061–3066CrossRefGoogle Scholar
  35. 35.
    Li B, Niu G, Sun L, Yao L, Wang C, Zhang Y (2018) Design optimization and antireflection of silicon nanowire arrays fabricated by au-assisted chemical etching. Mater Sci Semicond Process 82:1–8CrossRefGoogle Scholar
  36. 36.
    Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516CrossRefGoogle Scholar
  37. 37.
    Venkatesan R, Arivalagan MK, Venkatachalapathy V, Pearce JM, Mayandi J (2018) Effects of silver catalyst concentration in metal assisted chemical etching of silicon. Mater Lett 221:206–210CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Altyeb-Ali-Abaker Omer
    • 1
    • 2
  • Yuanyuan Yang
    • 1
    • 2
  • Guizhang Sheng
    • 1
  • Shaoyuan Li
    • 1
    • 2
    Email author
  • Jie Yu
    • 1
    • 2
    Email author
  • Wenhui Ma
    • 1
    • 2
  • Jiajia Qiu
    • 1
    • 2
  • Wael El Kolaly
    • 1
    • 2
    • 3
  1. 1.Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  2. 2.Institute of New Energy/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan ProvinceKunming University of Science and TechnologyKunmingChina
  3. 3.Agricultural Engineering Research Institute (AENRI), Agricultural Research Center (ARC), Ministry of AgricultureGizaEgypt

Personalised recommendations