Advertisement

Silicon

pp 1–7 | Cite as

Spectroscopic Characterizations of Sand Dunes Minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD Analyses

  • Nassima MeftahEmail author
  • Mohammed Sadok Mahboub
Original Paper
  • 8 Downloads

Abstract

This paper investigates the chemical and crystal structural properties of sand dunes of El-Oued region from the northeast Sahara of Algeria. By using of Fourier-transform infrared (FT-IR) spectroscopy, X-ray fluorescence (XRF) and X-ray diffraction (XRD) we show that El-Oued sand dunes are composed mainly of 97.6% α-quartz (SiO2) and 0.56% calcite (CaCO3). Very low concentrations of some oxides as Al2O3, Fe2O3, MgO and trace elements impurities were also found. The calculated crystallinity index CI = 0.975 confirm the highly crystalline nature of quartz. From the X-ray diffraction data, structural parameters of quartz and calcite minerals were determined. Quartz grains were found to have a hexagonal crystal structure with lattice parameters of a = b = 4.907 Å and c = 5.401 Å and calcite grains have a trigonal crystal structure with a = b = 4.977 Å and c = 17.04 Å. The calculated lattice parameters were similar to those of standard references. The crystallite sizes of quartz and calcite were estimated to be nanometric.

Keywords

Sand dunes Quartz Calcite X-rays diffraction Fourier-transform infrared Structural parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We greatly appreciate the constructive comments of the reviewers. The authors are grateful to S. Mostefaoui from the University of Pierre et Marie Curie, Paris for his beneficial discussions and suggestions to improve the manuscript and we are very thankful to M. Telus from the University of California Santa Cruz, USA for his help in improving the language of this manuscript.

References

  1. 1.
    Götze J; Möckel R (ed.) (2012) Quartz: Deposits, mineralogy and analytics. Springer Science & Business Media, Verlag Berlin HeidelbergGoogle Scholar
  2. 2.
    Al-Ansary M, Pöppelreiter MC, Al-Jabry A, Iyengar SR (2012) Geological and physiochemical characterization of construction sands in Qatar. Int J Sustain Built Environ 1, 64¨C84.  https://doi.org/10.1016/j.ijsbe.2012.07.001
  3. 3.
    Diago M, Iniesta AC, Delclos T, Shamim T, Calvet N (2015) Characterization of desert sand for its feasible use as thermal energy storage medium. Energy Procedia 75:2113–2118CrossRefGoogle Scholar
  4. 4.
    Hamoda MF, Al-Ghusain I, Al-Mutairi NZ (2004) Sand filtration of wastewater for tertiary treatment and water reuse. Desalination 164(3):203–211CrossRefGoogle Scholar
  5. 5.
    Pettijohn FJ, Potter PE, Siever R (1974) Sand and sandstone. Springer science and business media, Verlag Berlin HeidelbergGoogle Scholar
  6. 6.
    El-Baz F (1992) Origin and evolution of sand seas in the great Sahara and implications to petroleum and ground-water exploration. In proceedings of the 1st. Conference on the geology of the Arab world, Cairo University, CairoGoogle Scholar
  7. 7.
    Jallad KN, Espada-Jallad C (2008) Spectroscopic characterization of geological materials from the United Arab Emirates. Arab J Geosci 1(2):119–127CrossRefGoogle Scholar
  8. 8.
    Gnanasaravanan S, Rajkumar P (2013) Characterization of minerals in natural and manufactured sand in Cauvery River belt, Tamilnadu, India. Infrared Phys Technol 58:21–31CrossRefGoogle Scholar
  9. 9.
    Pye K, & Tsoar H (2008) Aeolian sand and sand dunes. Springer science & business media, Verlag Berlin HeidelbergGoogle Scholar
  10. 10.
    Dal Martello E, Bernardis S, Larsen RB, Tranell G, Di Sabatino M, & Arnberg L (2011a) Electrical fragmentation as a novel refining route for hydrothermal quartz for SoG-Si production. Miner Eng.  https://doi.org/10.1016/j.powtec.2012.02.055
  11. 11.
    Haus R, Prinz S, Priess C (2012) Assessment of high purity quartz resources. Quartz: deposits, mineralogy and analytics. Springer, Berlin, Heidelberg, pp 29–51CrossRefGoogle Scholar
  12. 12.
    Moore P (2005) High-purity quartz. Ind Miner 8:54-57Google Scholar
  13. 13.
    Hernandez-Montelongo J, Muñoz-Noval A, García-Ruíz JP, Torres-Costa V, Martin-Palma RJ, Manso-Silvan M (2015) Nanostructured porous silicon: the winding road from photonics to cell scaffolds. A review. Front Bioeng biotechnol 3:60Google Scholar
  14. 14.
    Lührs AK, Geurtsen W (2009) The application of silicon and silicates in dentistry: a review. Biosilica in evolution, morphogenesis, and Nanobiotechnology. Springer, Berlin, Heidelberg, pp 359–380CrossRefGoogle Scholar
  15. 15.
    Mangolini L (2013) Synthesis, properties, and applications of silicon nanocrystals. J Vac Sci Technol B Nanotechnol Microelectron 31(2):020801Google Scholar
  16. 16.
    Müller A, Ghosh M, Sonnenschein R, Woditsch P (2006) Silicon for photovoltaic applications. Mater Sci Eng B 134(2–3):257–262CrossRefGoogle Scholar
  17. 17.
    Howari FM, Baghdady A, Goodell PC (2007) Mineralogical and geomorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology 83:67–81CrossRefGoogle Scholar
  18. 18.
    Trabelsi W, Benzina M, Bouaziz S (2009) Physico-chemical characterization of the Douiret sand (Southern Tunisia): valorisation for the production of silica gel. Phys Procedia 2(3):1461–1467CrossRefGoogle Scholar
  19. 19.
    Elipe MG, Lopez-Querol S (2014) Aeolian sands: characterization, options of improvement and possible employment in construction–the state-of-the-art. Constr Build Mater 73:728–739CrossRefGoogle Scholar
  20. 20.
    Boussaa SA, Kheloufi A, Zaourar NB (2017) Characterization of impurities present on Tihimatine (Hoggar) quartz, Algeria. J Afr Earth Sci 135:213–219CrossRefGoogle Scholar
  21. 21.
    Dos Santos MFM, Fujiwara E, Schenkel EA, Enzweiler J, Suzuki CK (2015) Quartz sand resources in the Santa Maria Eterna formation, Bahia, Brazil: a geochemical and morphological study. J S Am Earth Sci 62:176–185CrossRefGoogle Scholar
  22. 22.
    Benaafi M, Abdullatif O (2015) Sedimentological, mineralogical, and geochemical characterization of sand dunes in Saudi Arabia. Arab J Geosci 8(12):11073–11092CrossRefGoogle Scholar
  23. 23.
    Adnani M, Azzaoui MA, Elbelrhiti H, Ahmamou M, Masmoudi L, Chiban M (2016) Yerdi sand dunes (Erfoud area, southeastern of Morocco): color, composition, sand’s provenance, and transport pathways. Arab J Geosci 9(5):366CrossRefGoogle Scholar
  24. 24.
    Mechri ML, Chihi S, Mahdadi N, Beddiaf S (2017) Study of heat effect on the composition of dunes sand of Ouargla (Algeria) using XRD and FTIR. Silicon 9(6):933–941CrossRefGoogle Scholar
  25. 25.
    Diago M, Iniesta AC, Soum-Glaude A, Calvet N (2018) Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology. Appl Energy 216:402–413CrossRefGoogle Scholar
  26. 26.
    Zouaouid K, Gheriani R (2018) Mineralogical analysis of sand roses and sand dunes samples from two regions of South Algeria. Silicon:1–9Google Scholar
  27. 27.
    Corwin DL, Yemoto K (2017) Salinity: Electrical Conductivity and Total Dissolved Solids. Methods Soil Anal 2(1)  https://doi.org/10.2136/msa2015.0039.
  28. 28.
    Beddiaf S, Chihi S, Leghrieb Y (2015) The determination of some crystallographic parameters of quartz, in the sand dunes of Ouargla, Algeria. J Afr Earth Sci 106:129–133CrossRefGoogle Scholar
  29. 29.
    Saikia BJ, Parthasarathy G (2010) Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India. J Mod Phys 1(04):206–210CrossRefGoogle Scholar
  30. 30.
    Boussaa S, Kheloufi A, Zaourar NB, Kerkar F (2016) Valorization of Algerian sand for photovoltaic application. Acta Phys Pol A 130(1)Google Scholar
  31. 31.
    Boev B, Jovanovski G, Makreski P (2009) Minerals from Macedonia. XX. Geological setting, lithologies, and identification of the minerals from Rzanovo Fe-Ni deposit. Turkish. J Earth Sci 18(4):631–652Google Scholar
  32. 32.
    Ersoy B, Dikmen S, Yildiz A, Gören R, Elitok Ö (2013) Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turkey. Turkish. J Earth Sci 22(4):632–644Google Scholar
  33. 33.
    Saikia BJ, Parthasarathy G, Sarmah NC (2008) Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull Mater Sci 31(5):775–779CrossRefGoogle Scholar
  34. 34.
    Mahdadi N, Chihi S, Bouguettaia H, Beddiaf S, Mechri ML (2017) Chromatic classification of Ouargla (Algeria) dunes sand: determination of Main compositions and color causes, by using XRD, FTIR and XRF. Silicon 9(2):211–221CrossRefGoogle Scholar
  35. 35.
    Maazouzi A, Kettab A, Badri A, Zahraoui B, Khelfaoui R (2014) Algerian sahara sand dunes characterization. Silicon 6(3):149–154CrossRefGoogle Scholar
  36. 36.
    Anbalagan G, Prabakaran AR, Gunasekaran S (2010) Spectroscopic characterization of Indian standard sand. J Appl Spectrosc 77(1):86–94CrossRefGoogle Scholar
  37. 37.
    Van der Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier Publishing, AmsterdamGoogle Scholar
  38. 38.
    Hlavay J, Jonas K, Elek S, Inczedy J (1978) Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods: II, investigations on quartz and feldspar. Clays Clay Miner 26(2):139–143CrossRefGoogle Scholar
  39. 39.
    Nayak PS, Singh BK (2007) Instrumental characterization of clay by XRF, XRD and FTIR. Bull Mater Sci 30(3):235–238CrossRefGoogle Scholar
  40. 40.
    Suresh G, Ramasamy V, Ponnusamy V (2011) Mineralogical and Thermoluminescence characterizations of the river sediments from Tamilnadu, India. Nat Resour Res 20(4):389–399CrossRefGoogle Scholar
  41. 41.
    File, P D (1997) JCPDS International Center for Diffraction Data: SwarthmoreGoogle Scholar
  42. 42.
    Scherrer P (1918) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Vol. 2, 98–100Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of physics, Faculty of Exact SciencesUniversity of El-OuedEl-OuedAlgeria
  2. 2.LEVRES Laboratory, Faculty of Exact SciencesUniversity of El-OuedEl-OuedAlgeria

Personalised recommendations