, Volume 11, Issue 1, pp 323–329 | Cite as

Exploring Adjacent Pentagons in Non-IPR and SW Defective Si60 and Si70 Silicon Fullerenes: a Computational Study

  • Maryam Anafcheh
  • Fereshteh Naderi
  • Zahra Khodadadi
  • Fatemeh Ektefa
  • Reza GhafouriEmail author
Original Paper


We have applied DFT calculations to investigate the effect of the adjacent pentagons (APs) on the geometries, stabilities, and electronic structures of the non-IPR isomers of Si60 and Si70 fullerenes containing three adjacent pentagon pairs, Si60(D3) and Si70(C2v), and the SW defective Si60 and Si70 fullerenes with four AP pairs. These non-IPR isomers of Si60 and Si70 cages are more stable than their IPR ones. Natural bond orbital analyses and electrostatic potential surfaces indicate the charge densities are more localized at the pentagon-pentagon edges of the non-IPR fullerenes, which increase by going to the charged ones. Based on our results, the SW rearrangement process in the Si60 and Si70 silicon fullerenes is exothermic. A silylene-like transition state along a stepwise reaction path is characterized at the B3LYP/6-311 + G* level of theory. The barrier for the SW rearrangement of Si60 fullerene is obtained to be 5.36 eV which is smaller than that reported for SW rearrangement of C60 fullerene.


Isolated pentagon rule SW defect Silicon fullerene Adjacent pentagons DFT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12633_2018_9994_MOESM1_ESM.docx (34 kb)
(DOCX 33.5 KB)


  1. 1.
    Kroto HW, Heath JR, O’ Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–162CrossRefGoogle Scholar
  2. 2.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354–358CrossRefGoogle Scholar
  3. 3.
    Teo BK, Sun XH (2007) Chem Rev 107:1454–1532CrossRefGoogle Scholar
  4. 4.
    Zdetsis AD (2010) Silicon fullerenes. In: Sattler KD (ed) Handbook of nanophysics. Taylor and Francis, New YorkGoogle Scholar
  5. 5.
    Nagase S, Kobayashi K (1991) Chem Phys Lett 187:291–294CrossRefGoogle Scholar
  6. 6.
    Piqueras MC, Crespo R, Orti E, Tomas F (1993) Chem Phys Lett 213:509–513CrossRefGoogle Scholar
  7. 7.
    Crespo R, Piqueras MC, Tomas F (1996) Synth Met 77:13–15CrossRefGoogle Scholar
  8. 8.
    Leszczynski J, Yanov I (1999) J Phys Chem 103:396–401CrossRefGoogle Scholar
  9. 9.
    Khan FS, Broughton JQ (1991) Phys Rev B 43:11754–11761CrossRefGoogle Scholar
  10. 10.
    Song J, Ulloa SE, Drabold DA (1996) Phys Rev B 53:8042–8051CrossRefGoogle Scholar
  11. 11.
    Li BX, Cao PL (2001) J Phys: Condens Matter 13:10865–10872Google Scholar
  12. 12.
    Chen ZF, Jiao HJ, Seifert G, Horn AHC, Yu DK, Clark T, Thiel W, Schleyer PVR (2003) J Comput Chem 24:948–953CrossRefGoogle Scholar
  13. 13.
    Sun Q, Wang Q, Jena P, Rao BK, Kawazoe Y (2003) Phys Rev Lett 90:135503–1–135503-4Google Scholar
  14. 14.
    Zhang D, Guo G, Liu C (2006) J Phys Chem B 110:14619–14622CrossRefGoogle Scholar
  15. 15.
    Jia J, Lai Y-N, Wu H-S, Jiao H (2009) J Phys Chem C 113:6887–6890CrossRefGoogle Scholar
  16. 16.
    Boon KT, Huang S-P, Zhang RQ, Li W-K (2009) Coord Chem Rev 253:2935–2958CrossRefGoogle Scholar
  17. 17.
    Zhao J, Ma L, Wen B (2007) J Phys: Condens Matter 19:226208Google Scholar
  18. 18.
    Li B-x, P-l Cao, Que D-L (2000) Phys Rev B 61:1685CrossRefGoogle Scholar
  19. 19.
    Wang L, Li D, Yang D (2006) Mol Simul 32:663CrossRefGoogle Scholar
  20. 20.
    Chen ZF, Jiao HJ, Seifert G, Horn AHC, Yu DK, Clark T, Thiel W, Schleyer PVR (2003) J Comput Chem 24:948–953CrossRefGoogle Scholar
  21. 21.
    Beck SM (1987) J Chem Phys 87:4233CrossRefGoogle Scholar
  22. 22.
    Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503CrossRefGoogle Scholar
  23. 23.
    Zdetsis AD (2007) Phys Rev B 75:085409CrossRefGoogle Scholar
  24. 24.
    Zdetsis AD (2007) Phys Rev B 76:075402CrossRefGoogle Scholar
  25. 25.
    Kumar V, Kawazoe Y (2003) Phys Rev Lett 90:055502CrossRefGoogle Scholar
  26. 26.
    Zdetsis AD (2007) Phys Rev B 75:085409CrossRefGoogle Scholar
  27. 27.
    Zdetsis AD (2009) Phys Rev B 80:195417CrossRefGoogle Scholar
  28. 28.
    Zdetsis AD (2011) J Phys Chem C 115:14507CrossRefGoogle Scholar
  29. 29.
    Saunders M (1991) Science 253:330CrossRefGoogle Scholar
  30. 30.
    Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545CrossRefGoogle Scholar
  31. 31.
    Linnolahti M, Karttunen AJ, Pakkanen TA (2006) Chem Phys Chem 7:1661CrossRefGoogle Scholar
  32. 32.
    Zdetsis AD (2009) Phys Rev B 79:195437CrossRefGoogle Scholar
  33. 33.
    Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545–2547CrossRefGoogle Scholar
  34. 34.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501–503CrossRefGoogle Scholar
  35. 35.
    Nimlos MR, Filley J, McKinnon JT (2005) J Phys Chem A 109:9896–9903CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Lin Y, Yakobson BI (2003) Phys Rev B 68:233403CrossRefGoogle Scholar
  37. 37.
    Samsonidze GG, Samsonidze GG, Yakobson BI (2002) Phys Rev Lett 88:065501CrossRefGoogle Scholar
  38. 38.
    Tersoff J (1988) Phys Rev B 37:6991–7000CrossRefGoogle Scholar
  39. 39.
    Brenner DW (1990) Phys Rev B 42:9458–9471CrossRefGoogle Scholar
  40. 40.
    Ghafouri R, Anafcheh M (2013) Superlattices and Microstruct 55:33–44CrossRefGoogle Scholar
  41. 41.
    Ghafouri R, Anafcheh M, Zahedi M (2014) Physica E 58:94–100CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  44. 44.
    Hariharan PC, Pople JA (1974) Mol Phys 27:209–214CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A (1998) Gaussian 98. Gaussian Inc., PittsburghGoogle Scholar
  46. 46.
    Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431–9437CrossRefGoogle Scholar
  47. 47.
    Barman S, Sen P, Das GP (2008) J Phys Chem C 112:19963–19968CrossRefGoogle Scholar
  48. 48.
    Anafcheh M, Ghafouri R (2014) J Clust Sci 25:505–515CrossRefGoogle Scholar
  49. 49.
    Zhang D, Ma C, Liu C (2007) J Phys Chem C 111:17099–17103CrossRefGoogle Scholar
  50. 50.
    Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R (2000) Angew Chem Int Ed 39:3273–3276CrossRefGoogle Scholar
  51. 51.
    Murray JS, Seminario JM, Concha MC, Politzer P (1992) Int J Quantum Chem 44:113–122CrossRefGoogle Scholar
  52. 52.
    Popov AA, Dunsch L (2007) J Am Chem Soc 129:11835–11849CrossRefGoogle Scholar
  53. 53.
    Bettinger HF, Yakobson BI, Scuseria GE (2003) J Am Chem Soc 125:5572–5580CrossRefGoogle Scholar
  54. 54.
    Reetz MT (1972) Angew Chem 84:161–162CrossRefGoogle Scholar
  55. 55.
    Murry RL, Strout DL, Scuseria GE (1994) Int J Mass Spectrom Ion Processes 138:113–131CrossRefGoogle Scholar
  56. 56.
    Qi X-L, Hughes T L, Zhang S-C (2008) Phys Rev B 78:195424CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Maryam Anafcheh
    • 1
  • Fereshteh Naderi
    • 2
  • Zahra Khodadadi
    • 3
  • Fatemeh Ektefa
    • 2
  • Reza Ghafouri
    • 3
    Email author
  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.Department of Chemistry, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Applied Chemistry, South Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations