Advertisement

Silicon

, Volume 11, Issue 2, pp 761–773 | Cite as

An Asymmetric Nanoscale SOI MOSFET by Means of a P-N Structure as Virtual Hole’s Well at the Source Side

  • Zeinab Ramezani
  • Ali A. OroujiEmail author
Original Paper
  • 20 Downloads

Abstract

This paper suggests and investigates a p-n structure, which emulates as a MOSFET. In the proposed structure we utilize an L-shape contact with a proper work function over the source region of silicon on insulator MOSFET to convert the source region from p+ to n+. We check its performance by indicating the band diagram and electron and hole concentrations which acts as n-p-n transistor in OFF state. By employing this idea, the p-n structure acts as MOSFET by a Virtual Hole’s Well at the source side (VW-SOI MOSFET), so the carrier concentrations specially hole concentration modify in the channel chiefly the source side in ON state which suppresses the floating body effect. The hole concentration, electric field, floating body effect and finally the lattice temperature improve. So the self heating effect that is one of the biggest problems in SOI devices, improves. Also, the simulation results of the VW-SOI MOSFET indicate that it is a suitable case for a switching performance because of decreasing gate-source, gate-drain capacitances, and noise. And finally the proposed structure can be a reliable structure because it decreases the effect of hot carriers due to short channel effects.

Keywords

Nano SOI MOSFET Short channel effect Electric field Hot electron effect Self heating Floating body effect Hole concentration Junction capacitances Noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ervin J, Balijepalli A, Joshi P, Kushner V, Yang J, Thornton TJ (2006) CMOS-compatible SOI MESFETs with high breakdown voltage. IEEE Trans Electron Devices 53:3129–35CrossRefGoogle Scholar
  2. 2.
    Cristoloveanu S (2001) Silicon on insulator technologies and devices: from present to future. Solid State Electron 45:1403–1411CrossRefGoogle Scholar
  3. 3.
    Yoshimi M, Hazama H, Takahashi M, Kambayashi S, Wada T, Kato K, Tango H (1989) Two-dimensional simulation and measurement of high-performance MOSFETs made on a very thin SOI film. IEEE Trans Electron Devices 36:493–503CrossRefGoogle Scholar
  4. 4.
    Braccioli M, Curatola G, Yang Y, Sangiorgi E, Fiegna C (2009) Simulation of selfheating effects in different SOI MOS architectures. Solid State Electron 53:445–451CrossRefGoogle Scholar
  5. 5.
    Goel AK, Tan TH (2006) High-temperature and self-heating effects in fully depleted SOI MOSFETs. Microelectron J 37(9):963–975CrossRefGoogle Scholar
  6. 6.
    Ramezani Z, Orouji AA (2016) High reliable nanoscale fully-depleted soi-mosfet by amended channel. Superlattices Microstruct 98:359–370CrossRefGoogle Scholar
  7. 7.
    Zhang B, Li Z, Hu S, Luo X (2009) Field enhancement for dielectric layer of high-voltage devices on silicon on insulator. IEEE Trans Electron Devices 56:2327–34CrossRefGoogle Scholar
  8. 8.
    Colinge JP (2004) Silicon-on-insulator: materials to VLSI, 3rd edn. Kluwer, NorweelCrossRefGoogle Scholar
  9. 9.
    Ramezani Z, Orouji AA (2017) Amended electric field distribution: a reliable technique for electrical performance improvement in nano scale SOI MOSFETs. J Electron Mater (JEMS) 46(1):2269–2281CrossRefGoogle Scholar
  10. 10.
    Ramezani Z, Orouji AA (2017) A novel double gate MOSFET by symmetrical insulator packets with improved short channel effects. Int J Electron 105(3):361–374Google Scholar
  11. 11.
    Zhu M, Chen P, Fu RKY, Liu W, Lin C, Chu PK (2004) Simulation of suppression of floating-body effect in partially depleted SOI MOSFET using a Si1−xGex dual source structure. Mater Sci Eng B 114–115:264–268CrossRefGoogle Scholar
  12. 12.
    Ramezani Z, Orouji AA (2017) A new DG nanoscale TFET based on MOSFETs by using source gate electrode: 2D simulation and an analytical potential model. J Korean Phys Soc 71(4):215–221CrossRefGoogle Scholar
  13. 13.
    Molaei R, Abadi I, Sedigh Ziabari SA (2016) Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl Phys A 122(6):616CrossRefGoogle Scholar
  14. 14.
    Device Simulator Atlas (2015) Atlas User’s Manual. Santa Clara, Silvaco Int. Softw.Google Scholar
  15. 15.
    Chen J, Luo J, Wu Q, Chai Z, Yu T, Dong Y, Wang X (2011) A tunnel diode body contact structure to suppress the floating-body effect in partially depleted SOI MOSFETs. IEEE Trans Electron Devices 43:1346–1348CrossRefGoogle Scholar
  16. 16.
    Colinge JP (1987) Hot-electron effects in silicon-on-insulator n-channel MOSFET’s. IEEE Trans Electron Devices 34(10):2173–2177CrossRefGoogle Scholar
  17. 17.
    Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New JerseyGoogle Scholar
  18. 18.
    Tyagi S, Kumar S, Abhishek K (2015) Analysis of threshold voltage in nano channel length MOSFETs. Int J Adv Res Comput Commun Eng 4(5):563–566CrossRefGoogle Scholar
  19. 19.
    Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices 56(9):2092–2098CrossRefGoogle Scholar
  20. 20.
    Jain A, Alam MA (2014) Stability constraints define the minimum subthreshold swing of a negative capacitance field-effect transistor. IEEE Trans Electron Devices 7:61Google Scholar
  21. 21.
    Cappy A (1988) Noise modeling and measurement techniques. IEEE Trans Microwave Theory Tech 36(1):1–10CrossRefGoogle Scholar
  22. 22.
    Cappy A, Vanoverschelde A, Schortgen M, Versnaeyen C, Salmer G (1985) Noise modeling in sub micrometer-gate two-dimensional electron-gas field-effect transistors. IEEE Trans Electron Devices 32(12):2787–2796CrossRefGoogle Scholar
  23. 23.
    Carnez B, Cappy A, Fauquembergue R, Constant E, Salmor G (1981) Noise modeling in sub micrometer-gate FET’s. IEEE Trans Electron Devices 28(7):784–789CrossRefGoogle Scholar
  24. 24.
    Ramezani Z, Orouji AA, Keshavarzi P (2014) A novel double-recessed 4H-SiC MESFET using scattering the electric field for high power and RF applications. Physica E: Low-dimensional Systems and Nanostruct 59:202–209CrossRefGoogle Scholar
  25. 25.
    Tuzun O, Altindal S, Oktil S (2006) Frequency and voltage Dependent surface states and series resistance of novel Si solar cells. J Mater Sci Eng B 134(2–3):291–295CrossRefGoogle Scholar
  26. 26.
    Varadharajaperumal M, Khandelwal S (2010) Modeling of high frequency noise in SOI MOSFETs. In: 23rd international conference on VLSI designGoogle Scholar
  27. 27.
    Anvarifard MK, Orouji AA (2013) Improvement of self-heating effect in a novel nanoscale SOI MOSFET with undoped region: a comprehensive investigation on DC and AC operations. Superlattice Microst 60:561–579CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentSemnan UniversitySemnanIran

Personalised recommendations