Advertisement

Silicon

, Volume 11, Issue 1, pp 241–255 | Cite as

Environmental and Economical Aspects of Partial Replacement of Ordinary Portland Cement with Saudi Raw Minerals

  • N. M. KhalilEmail author
  • Yousif Algamal
Original Paper
  • 8 Downloads

Abstract

This study aims to utilize a local natural mineral material from different places in western area of Saudi Arabia namely, (Osfan, Alkamel, Wadi starah, Khulais, Jeddah and Alghowla) as a partial replacement of Ordinary Portland Cement (OPC) in order to increase its productivity, minimizing the problems associated with its production in terms of energy consumption and air pollution. In addition to the reference sample (C:100% wt. OPC), other six mixes were prepared containing 75 wt.% of OPC and 25 wt.% of each raw mineral. They were denoted as C1, C2, C3, C4, C5 and C6. Different cementing, sintering, chemical and mechanical properties of the prepared mixes were tested according to the international standard specifications. It was concluded that OPC blended with 25 wt.% of local natural minerals from Jeddah (C5), Wadi starah (C3) and Alkamel C2 show outstanding cementing and mechanical properties compared with the reference sample. They recorded relatively longer setting time ranges 55–160, 52–145 and 52–144 min respectively compared with the reference sample (C) which recorded only 48–120 min. Relatively higher percent of combined water (23.75–28.23, 20.84–24.59, 16.34–19.31%), respectively at different ages of hydration, compared to the reference sample (C) that recorded 15.59–18,00%. The samples showed higher heat of hydration 81–97, 77–94, 75–90 cal/g, compared with reference sample which recorded 70- 85 cal/g, higher bulk density 1.61–1.96, 1.66–1.84 and 1.65–1.84 g/cm3, respectively compared with the reference sample that recorded 1.61–1.84 g/cm3, lower apparent porosity of (10.41–15.02, 12.75–16.25, 13.96–17.40%), respectively whereas the reference sample noted (14.39–24.11%) and relatively higher values of compressive strength (90–125, 80–120, 75–113 kg/cm2), respectively compared with the reference sample which recorded (60–110 kg/cm2). The remaining samples C1, C4 and C6 showed less cementing and mechanical properties compared with the reference sample (C). The improved properties of C5, C3 and C2 are due to their relatively higher content of portlandite mineral {Ca(OH2)} one of the main hydration products of Portland cement, as well as their relatively better microstructure.

Keywords

Local minerals Cement Compressive strength XRD SEM 

Notes

Acknowledgements

This article entitled; Environmental and economical aspects of partial replacement of OPC with Saudi raw minerals, contains the results and findings of a research project that is funded by King Abdulaziz City for Science and Technology (KACST) Grant No. (36-33).

References

  1. 1.
    Khalil NM, Hassen El-Taher, Shakdofa MM, Farahat M (2014) J Indust Chem Eng 20:2998CrossRefGoogle Scholar
  2. 2.
    Rukzon S, Chindaprasirt P (2008) J Appl Sci 8:1097CrossRefGoogle Scholar
  3. 3.
    Jaturapitakkul C, Kiattikomol K, Sata V, Leekeeratikul T (2004) Cem Concr Res 34:549CrossRefGoogle Scholar
  4. 4.
    Li H, Sun H, Xiao X, Chen H (2006) J Univ Sci Technol Beijing 13:183CrossRefGoogle Scholar
  5. 5.
    Mittal D (1997) Resonance 2(7):64–66CrossRefGoogle Scholar
  6. 6.
    Chandra S (1997) Noyes Publication. ISBN 0-8155-1393-3, 184Google Scholar
  7. 7.
    Yamamichi H, Qingge F, Sugita S (2003) 6th Proceedings CANMET/ACI international conference on durability of concrete SP-212, 891Google Scholar
  8. 8.
    Memon SA, Shaikh MA, Akbar H (2011) Constr Build Mater 25:1044CrossRefGoogle Scholar
  9. 9.
    Metha PK, Pitt N (1976) Res Recov Conserv 2:23Google Scholar
  10. 10.
    Tuts R (1990) HRDU PublicationsGoogle Scholar
  11. 11.
    Mehta PK (1994) US Patent No: 5346548Google Scholar
  12. 12.
    Stroven P, Bui DD, Sabuni E (1999) Fuel 78:153CrossRefGoogle Scholar
  13. 13.
    Deepa GN, Jagadish KS, Fraaij A (2006) Cem Concr Res 36:1062CrossRefGoogle Scholar
  14. 14.
    Nehdi M, Duquette J, El Damatty A (2003) Cem Concr Res 33:1203CrossRefGoogle Scholar
  15. 15.
    Federal Highway Administration US (1975) Dept transp, fly ash for highway eng. FHWA-SA-94-081Google Scholar
  16. 16.
    Am. Concr. Inst., Use of fly ash concr., ACI2322R-69, 34 (1996)Google Scholar
  17. 17.
    ASTM (2006) West ConshohockenGoogle Scholar
  18. 18.
    Krstulovic P (1994) Cem Concr Res 24:721CrossRefGoogle Scholar
  19. 19.
    Mora EP, Paya J, Monzo J (1993) Cem Concr Res 23:917CrossRefGoogle Scholar
  20. 20.
    Bartos P (1992) Elsevier Science Publishing, Amsterdam, New YorkGoogle Scholar
  21. 21.
    Naik TR, Ramme BW (1990) PCI J 35:72CrossRefGoogle Scholar
  22. 22.
    Scanlon JM (1994) ASTM, STP169 C, PhiladelphiaGoogle Scholar
  23. 23.
    Mehta PK (1986) Concr Man. Prentice-Hall, Englewood CliffsGoogle Scholar
  24. 24.
    Kucharska L, Moczko M (1994) Adv Cem Res 6:139CrossRefGoogle Scholar
  25. 25.
    Male PL (1993) In: Bartos PJM (ed) Proceedings of the international RILEM workshop, paper 19. Paisley, Scotland. 177Google Scholar
  26. 26.
    Lindgreena H, Geikerb M, Krøyerc H, Springerd N, Skibstedc J (2008) Cem Concr Res 30:686CrossRefGoogle Scholar
  27. 27.
    Wonga LS, Hashimb R, Alic F (2013) Constr Build Mater 40:792Google Scholar
  28. 28.
    Snellings R, Mertens G, Elsen J (2012) Rev Mineral Geochem 74:211CrossRefGoogle Scholar
  29. 29.
    Mechti W, Minf T, Chaabouni M, Rouis J (2014) Constr Build Mater 50:609CrossRefGoogle Scholar
  30. 30.
    Kaminskas R, Cesnauskas V, Kubiliute R (2015) Constr Build Mater 95:537CrossRefGoogle Scholar
  31. 31.
    Bondar D, Lynsdale C, Milestone N, Hassani N, Ramezanianpour A (2011) Constr Build Mater 25:2906CrossRefGoogle Scholar
  32. 32.
    Sandra P, Pineda Y, Gutiérrez O. (2015) Proc Mater Sci 9:496CrossRefGoogle Scholar
  33. 33.
    Rashad A (2015) Int J Sustain Built Environ, in press, Available online 9 OctoberGoogle Scholar
  34. 34.
    Usón AA, López-Sabirón AM, Ferreira G, Sastresa EL (2013) Renew Sustain Energy Rev 23:242CrossRefGoogle Scholar
  35. 35.
    Han W, Sun T, Li X, Sun M, Lu Y (2016) Nucl Inst Methods Phys Res B 381:11–15CrossRefGoogle Scholar
  36. 36.
    Rakhimov RZ, Rakhimova NR, Gaifullin AR, Morozov VP (2017) J Build Eng 11:30–36CrossRefGoogle Scholar
  37. 37.
    Yu R, Shui Z (2013) Constr Build Mater 49:841–851CrossRefGoogle Scholar
  38. 38.
    Lin K, Lo K, Hung M, Cheng T, Chang Y (2017) Sustain Environ Res 1–7Google Scholar
  39. 39.
    ASTM standards, C187-83 (1983) 195Google Scholar
  40. 40.
    ASTM standards, C191-83 (1983) 208Google Scholar
  41. 41.
    DIN51 056 (1985)Google Scholar
  42. 42.
    BS EN 196-9:2010Google Scholar
  43. 43.
    Roy DM, Gouda GR (1975) Cem Concr Res 5:153CrossRefGoogle Scholar
  44. 44.
    Khalil NM, Hassen E, Okasha A, Ewais EMM (2010) Int J Mater Eng Technol 377Google Scholar
  45. 45.
    Ahiduzzaman M (2007) Energies 2:134–149CrossRefGoogle Scholar
  46. 46.
    King B (2000) A brief introduction to Pozzolans. In: Alternative construction contemporary natural building methods. Wiley, LondonGoogle Scholar
  47. 47.
    Cook JD (1986) Concr Technol Des Cem Repl Mater 3:171–195Google Scholar
  48. 48.
    Chindaprasirt P, Rukzon S (2008) Constr Build Mater 22:1601CrossRefGoogle Scholar
  49. 49.
    Zhang MH, Lastra R, Malhotra VM (1996) Cem Concr Res 26:963CrossRefGoogle Scholar
  50. 50.
    Qijun Y, Sawayama K, Sugita S, Shoya M, Isojima Y (1999) Cem Concr Res 29:37CrossRefGoogle Scholar
  51. 51.
    Cisse IK, Laquerbe M (2000) Cem Concr Res 30:13CrossRefGoogle Scholar
  52. 52.
    Beagle EC (1978) Rice husk conversion to energy FAO Agric. Serv Bull, FAO, RomeGoogle Scholar
  53. 53.
    Rukzon S, Chindaprasirt P, Mahachai R (2009) Int J Min Met Mater 16:242CrossRefGoogle Scholar
  54. 54.
    Alwan F, Jaya P, Abu Bakar RB, Joharim M (2011) Int J Appl Sci Technol 1:54Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Sciences & Arts- KhulaisUniversity of JeddahJeddahKingdom of Saudi Arabia
  2. 2.Refractories, Ceramics and Building Materials DepartmentNational Research CentreCairoEgypt
  3. 3.Chemistry Department, Faculty of Science & TechnologyOmdurman Islamic UniversityOmdurmanSudan

Personalised recommendations