Advertisement

Silicon

, Volume 11, Issue 1, pp 267–276 | Cite as

Voltammetric Properties of Nickel Hexacyanoferrate (III) Obtained on the Titanium (IV) Silsesquioxane Occluded into the H-FAU Zeolite for Detection of Sulfite

  • Devaney Ribeiro do CarmoEmail author
  • Vitor Alexandre Maraldi
  • Loanda Raquel Cumba
Original Paper
  • 16 Downloads

Abstract

A composite prepared from titanium (IV) silsesquioxane and phosphoric acid (TTiP) was prepared and occluded into the H-FAU zeolite (ZTTiP). The material was chemically modified with nickel and subsequently by potassium hexacyanoferrate (III) (ZTTiPNiH). It was preliminarily characterized by infrared spectroscopy (IR), energy dispersive X-ray spectroscopy (EDS) and cyclic voltammetry (CV). The voltammetric behavior of ZTTipNiH was obtained employing a modified graphite paste electrode (GPE) showing one well-defined redox couple with a formal potential of E\(^{{\theta ^{\prime }}}=\) 0.51V (vs Ag/AgCl(sat)), KCl (3M) (20% w/w; v = 20 mV s− 1; KCl; 1.00 mol L− 1) corresponding to the NiIIFeII(CN)6/NiIIFeIII(CN)6 redox process. After rigorous voltammetric studies, the GPE modified with ZTTiPNiH was applied for facile and rapid detection of sulfite. From the analytical curve, a linear response was obtained in a concentration range of 0.05 to 0.80 mmol L− 1 and a detection limit (3σ) of 0.05 mmol L− 1 with a relative standard deviation of 4.21% (n = 3) and an amperometric sensitivity of 14.42 mA L mol− 1 for sulfite.

Keywords

Silsesquioxanes Titanium (IV) silsesquioxane Zeolite Nickel hexacyanoferrate (III) Voltammetry Sulfite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding Information

The authors would like to express their gratitude for the financial support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP- Proc. 2012/05438-1 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Brown JF, Vogt LH, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86(6):1120–1125.  https://doi.org/10.1021/ja01060a033 CrossRefGoogle Scholar
  2. 2.
    Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87(19):4313–4317.  https://doi.org/10.1021/ja00947a016 CrossRefGoogle Scholar
  3. 3.
    Voronkov MG, Lavrent’yev VL (1982) Polyhedral oligosilses- quioxanes and their homo derivatives. Top Curr Chem 102:199–236.  https://doi.org/10.1007/3-540-11345-2_12 CrossRefGoogle Scholar
  4. 4.
    Abbenhuis HCL (2000) Advances in homogeneous and heterogeneous catalysis with metal-containing silsesquioxanes. Chem Eur J 6 (1):25–32.  https://doi.org/10.1002/(SICI)1521-3765(20000103)6:1<25::AID-CHEM25>3.0.CO;2-Y
  5. 5.
    Feher FJ, Budzichowski TA (1995) Silsesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron: Polyhedron 14(22):3239–3253.  https://doi.org/10.1016/0277-5387(95)85009-0 CrossRefGoogle Scholar
  6. 6.
    Harrison PG (1997) Silicate cages: precursors to new materials. J Organomet Chem 542(2):141–183.  https://doi.org/10.1016/S0022-328X(96)06821-0 CrossRefGoogle Scholar
  7. 7.
    Feher FJ, Tajima TL (1994) Synthesis of a molybdenum-containing silsesquioxane which rapidly catalyzes the metathesis of olefins. J Am Chem Soc 116(5):2145–2146.  https://doi.org/10.1021/ja00084a065 CrossRefGoogle Scholar
  8. 8.
    Hermann WA, Anwander R, Dufaud V, Scherer W (1994) Molekulare Siloxankomplexe der Seltenerdmetalle – Modellsysteme für silicatgeträgerte Katalysatoren? Angew Chem 106(12):1338–1340.  https://doi.org/10.1002/ange.19941061221 CrossRefGoogle Scholar
  9. 9.
    Hermann WA, Anwander R, Dufaud V, Scherer W (1994) Molecular siloxane complexes of rare earth metals—model systems for silicate-supported catalysts? Angew Chem Int Ed Engl 33(12):1285–1286.  https://doi.org/10.1002/anie.199412851 CrossRefGoogle Scholar
  10. 10.
    Liu J-C, Wilson SR, Shapley JR, Feher FJ (1990) A triosmium cluster-siloxane cage complex. Synthesis and structure of HOs3(CO)10[(.mu.-O)Si7O10(C6H11)7]. Inorg Chem 29(26):5138–5139.  https://doi.org/10.1021/ic00351a002 CrossRefGoogle Scholar
  11. 11.
    Buys IE, Hambley TW, Houlton DJ, Maschmeyer T, Masters AF, Smith AK (1994) Models of surface-confined metallocene derivatives. J Mol Catal 86(1–3):309–318.  https://doi.org/10.1016/0304-5102(93)E0177-I CrossRefGoogle Scholar
  12. 12.
    Jefferson L-CU, Netchaev AD, Jefcoat JA, Windham AD, McFarland FM, Guo S, Buchanan RK, Buchanan JP (2015) Preparation and characterization of polyhedral oligomeric silsesquioxane-containing, Titania-Thiol-Ene composite photocatalytic coatings, emphasizing the hydrophobic–hydrophilic transition. ACS Appl Mater Interfaces 7(23):12639–12648.  https://doi.org/10.1021/acsami.5b01488 CrossRefGoogle Scholar
  13. 13.
    Bai H, Zheng Y, Li P, Zhang A (2015) Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2. Chem Res Chin Univ 31(3):484–488.  https://doi.org/10.1007/s40242-015-4443-5 CrossRefGoogle Scholar
  14. 14.
    Perše LS, Mihelčič M, Orel B (2015) Rheological and optical properties of solar absorbing paints with POSS-treated pigments. Mater Chem and Phys 149–150:368–377.  https://doi.org/10.1016/j.matchemphys.2014.10.031 CrossRefGoogle Scholar
  15. 15.
    Haddad TS, Viers BD, Phillips SH (2001) Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J Inorg Organomet Polym Mater 11(3):155–164.  https://doi.org/10.1023/A:1015237627340 CrossRefGoogle Scholar
  16. 16.
    Mehta AM, Tembe GL, Parikh PA, Mehta GN (2011) Catalytic ethylene polymerization by the titanium-polyhedral oligomeric silsesquioxane-Et3Al2Cl3 system. Reac Kinet Mech Cat 104(2):369–375.  https://doi.org/10.1007/s11144-011-0356-6 CrossRefGoogle Scholar
  17. 17.
    do Carmo DR, Dias Filho NL, Stradiotto NR (2007) Encapsulation of titanium (IV) silsesquioxane into the NH4USY zeolite: prepa- ration, characterization and application. Mater Res Bull 42 (10):1811–1822.  https://doi.org/10.1016/j.materresbull.2006.12.001 CrossRefGoogle Scholar
  18. 18.
    Collman JP, Marroco M, Denisevich P, Koval C, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem Interfacial Electrochem 101(1):117–122.  https://doi.org/10.1016/S0022-0728(79)80085-6 CrossRefGoogle Scholar
  19. 19.
    Isaac A, Davis J, Livingstone C, Wain AJ, Compton RG (2006) Electroanalytical methods for the determination of sulfite in food and beverages. Trends Anal Chem 25(6):589–598.  https://doi.org/10.1016/j.trac.2006.04.001 CrossRefGoogle Scholar
  20. 20.
    Schwartz H (1983) Sensitivity to ingested metabisulfite: variations in clinical presentation. J Allergy Clin Inmunol 71(5):487–489.  https://doi.org/10.1016/0091-6749(83)90466-9 CrossRefGoogle Scholar
  21. 21.
    Araújo AN, Couto CMCM, Lima JLFC, Montenegro MCBSM (1998) Determination of SO2 in wines using a flow injection analysis system with potentiometric detection. J Agric Food Chem 46(1):168–172.  https://doi.org/10.1021/jf970354i CrossRefGoogle Scholar
  22. 22.
    Azevedo CMN, Araki K, Toma HE, Angnes L (1999) Determination of sulfur dioxide in wines by gas-diffusion flow injection analysis utilizing modified electrodes with electrostatically assembled films of tetraruthenated porphyrin. Anal Chim Acta 387(2):175–180.  https://doi.org/10.1016/S0003-2670(99)00060-4 CrossRefGoogle Scholar
  23. 23.
    William S (1984) Official methods of the AOAC, 14th edn. Association of Official Analytical Chemists Inc, ArlingtonGoogle Scholar
  24. 24.
    Nour El-Dein FA, Zayed MA, Khalifa H (1989) Some observations on the microdetermination of sulfite, sulfide, and thiosulfate by mercurimetric titration. Microchem J 39(1):126–132.  https://doi.org/10.1016/0026-265X(89)90018-0 CrossRefGoogle Scholar
  25. 25.
    Li Y, Zhao M (2006) Simple methods for rapid determination of sulfite in food products. Food Control 17 (12):975–980.  https://doi.org/10.1016/j.foodcont.2005.07.008 CrossRefGoogle Scholar
  26. 26.
    Zare-Dorabei R, Boroun S, Noroozifar M (2018) Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor. Talanta 178:722–727.  https://doi.org/10.1016/j.talanta.2017.10.012 CrossRefGoogle Scholar
  27. 27.
    Perfetti GA, Diachenko GW (2003) Determination of sulfite in dried garlic by reversed phase ion-pairing liquid chromatography with post-column detection. J AOAC Int 86(3):544–550PubMedGoogle Scholar
  28. 28.
    Kim HJ, Kim YK (1986) Analysis of free and total sulfites in food by ion chromatography with electrochemical detection. J Food Sci 51(5):1360–1361.  https://doi.org/10.1111/j.1365-2621.1986.tb13122.x CrossRefGoogle Scholar
  29. 29.
    Theisen S, Hänsch R, Kothe L, Leist U, Galensa R (2010) A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor. Biosens Bioelectron 26(1):175–181.  https://doi.org/10.1016/j.bios.2010.06.009 CrossRefGoogle Scholar
  30. 30.
    Preecharueangrit S, Thavarungkul P, Kanatharana P, Numnuam A (2018) Amperometric sensing of sulfite using a gold electrode coated with ordered mesoporous carbon modified with nickel hexacyanoferrate. J Electroanal Chem 808:150–159.  https://doi.org/10.1016/j.jelechem.2017.11.070 CrossRefGoogle Scholar
  31. 31.
    García T, Casero E, Lorenzo E, Pariente F (2005) Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes. Sens Actuators B Chem 106(2):803–809.  https://doi.org/10.1016/j.snb.2004.09.033 CrossRefGoogle Scholar
  32. 32.
    Cumba LR, Bicalho UO, Carmo DR (2012) Voltammetric studies of cobalt hexacyanoferrate formed on the titanium (IV) phosphate surface and its application to the determination of sulfite. Int J of Electrochem Sci 7 (3):2123–2135Google Scholar
  33. 33.
    Jerman I, Koželj M, Orel B (2010) The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells 94(2):232–245.  https://doi.org/10.1016/j.solmat.2009.09.008 CrossRefGoogle Scholar
  34. 34.
    Fang B, Feng Y, Wang G, Zhang C, Gu A, Liu M (2011) A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes. Mikrochim Acta 173(1-2):27–32.  https://doi.org/10.1007/s00604-010-0509-8 CrossRefGoogle Scholar
  35. 35.
    Mostafa M, El-Absy M A, Amin M, El-Amir MA, Farag AB (2010) Partial purification of neutron-activation 99Mo from cross-contaminant radionuclides onto potassium nickel hexacyanoferrate(II) column. J Radioanal Nucl Chem 285(3):579–588.  https://doi.org/10.1007/s10967-010-0584-7 CrossRefGoogle Scholar
  36. 36.
    Bagkar N, Betty CA, Hassan PA, Kahali K, Bellare JR, Yakhmi JV (2006) Self-assembled films of nickel hexacyanoferrate: Electrochemical properties and application in potassium ion sensing. Thin Solid Films 497(1–2):259–266.  https://doi.org/10.1016/j.tsf.2005.11.002 CrossRefGoogle Scholar
  37. 37.
    Deng K, Li C, Qiu X, Zhou J, Hou Z (2015) Electrochemical preparation, characterization and application of electrodes modified with nickel–cobalt hexacyanoferrate/graphene oxide–carbon nanotubes. J Electroanal Chem 755:197–202.  https://doi.org/10.1016/j.jelechem.2015.08.003 CrossRefGoogle Scholar
  38. 38.
    Makowski O, Kowalewska B, Szymanska D, Stroka J, Miecznikowski K, Palys B, Malik MA, Kulesza PJ (2007) Controlled fabrication of multilayered 4-(pyrrole-1-yl) benzoate supported poly(3,4-ethylenedioxythiophene) linked hybrid films of Prussian blue-type nickel hexacyanoferrate. Electrochim Acta 53(3):1235–1243.  https://doi.org/10.1016/j.electacta.2007.02.083 CrossRefGoogle Scholar
  39. 39.
    Engel D, Grabner EW (1985) Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective electrode. Ber Bunsenges Phys Chem 89(9):982–986.  https://doi.org/10.1002/bbpc.19850890911 CrossRefGoogle Scholar
  40. 40.
    Jayasri D, Narayanan SS (2006) Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as an electrocatalyst. Sens Actuators B Chem 119 (1):135–142.  https://doi.org/10.1016/j.snb.2005.11.064 CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  42. 42.
    do Carmo DR, Silva RMD, Stradiotto NR (2002) Estudo eletroquímico de Fe[Fe(CN)5NO] em eletrodo de pasta de grafite. Eclet Quim 27:197–210.  https://doi.org/10.1590/S0100-46702002000200017 CrossRefGoogle Scholar
  43. 43.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28.  https://doi.org/10.1016/S0022-0728(79)80075-3 CrossRefGoogle Scholar
  44. 44.
    Babu RS, Prabhu P, Narayanan SS (2011) Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferrate nanoparticles composite electrode. Colloids Surf B Biointerfaces 88(2):755–763.  https://doi.org/10.1016/j.colsurfb.2011.08.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Devaney Ribeiro do Carmo
    • 1
    Email author
  • Vitor Alexandre Maraldi
    • 1
  • Loanda Raquel Cumba
    • 1
  1. 1.Departamento de Física e Química, Faculdade de Engenharia de Ilha SolteiraUNESP - Universidade Estadual PaulistaIlha SolteiraBrazil

Personalised recommendations