Advertisement

Silicon

, Volume 11, Issue 2, pp 1151–1157 | Cite as

Silicon Nanowires as Sensory Material for Surface-Enhanced Raman Spectroscopy

  • Hrvoje Gebavi
  • Davor Ristić
  • Nikola Baran
  • Lara Mikac
  • Vlasta Mohaček-Grošev
  • Marijan Gotić
  • Mile IvandaEmail author
Original Paper
  • 41 Downloads

Abstract

This paper shows steps for silicon nanowires substrates synthesis in detail. The research is focused on experimental techniques optimization while the targeted application was a fabrication of highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS). Horizontal silicon nanowires on top of two-inch wafers were obtained by vapour-liquid-solid growth inside the low-pressure chemical vapour deposition reaction tube. The silicon nanowires morphology was monitored by scanning electron microscope after a short and long growth period which defined an adequate deposition time for SERS applications. Surface-enhanced Raman spectroscopy features were tested on silver nanoparticles decorated substrates and the detection concentration limit of 10− 9 M of rhodamine 6G molecules was reached. Raman spectroscopy showed that the 532 nm laser excitation powers of less than 4 mW (∼0.57 kW/cm2) do not widen the phonon peak or shift its frequency and the nanostructure distribution parameter of 3.7 nm was calculated. The horizontally placed Ag decorated nanowires are proved to be sensitive substrates for surface-enhanced Raman spectroscopy only if the silicon nanowires thickness, length, volume density as well as metal nanoparticle size and distribution are carefully designed.

Keywords

Surface-enhanced Raman spectroscopy Silicon nanowires Vapor-liquid-solid Rhodamine detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank ‘Zaklada hrvatske akademije znanosti i umjetnosti’ for the financial support in the frame of the project ‘Površinski pojačano Ramanovo raspršenje za razvoj biokemijskih senzora, 2015’.

This work has been partially supported by SAFU, project263 KK.01.1.1.01.0001., and by Croatian Science Foundation under the project (IP-2014-09-7046).

References

  1. 1.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–120.  https://doi.org/10.1016/S0022-0728(77)80224-6 CrossRefGoogle Scholar
  2. 2.
    Kahraman M, Mullen E, Korkmaz A, Hogiu SW (2017) Nanophotonics 6(5):831–852.  https://doi.org/10.1515/nanoph-2016-0174 CrossRefGoogle Scholar
  3. 3.
    Kneipp K (2007) Phys Today 60(11):40.  https://doi.org/10.1063/1.2812122 CrossRefGoogle Scholar
  4. 4.
    Nie S, Emory SR (1997) Science 275:1102–1106.  https://doi.org/10.1126/science.275.5303.1102 CrossRefGoogle Scholar
  5. 5.
    Namdari P, Daraee H, Eatemadi A (2016) Nanoscale Res Lett 11:406.  https://doi.org/10.1186/s11671-016-1618-z CrossRefGoogle Scholar
  6. 6.
    Picraux ST, Dayeh SA, Manandhar P, Perea DE, Choi SG (2010) JOM 62(4):35–43.  https://doi.org/10.1007/s11837-010-0057-z CrossRefGoogle Scholar
  7. 7.
    Rashid JIA, Abdullah J, Yusof NA, Hajian R (2013) J Nanomaterials 328093:16.  https://doi.org/10.1155/2013/328093 Google Scholar
  8. 8.
    Seo D, Lee J, Kim SW, Kim I, Na J, Hong M-H, Choi H-J (2015) Nanoscale Res Lett 10:190.  https://doi.org/10.1186/s11671-015-0893-4 CrossRefGoogle Scholar
  9. 9.
    Cao YY, Yang GW (2012) J Phys Chem C 116:6233–6238.  https://doi.org/10.1021/jp210659g CrossRefGoogle Scholar
  10. 10.
    Kern W (1990) J Electrochem Soc 137 (6):1887–1892.  https://doi.org/10.1149/1.208682 CrossRefGoogle Scholar
  11. 11.
    Zheng M, McDowell D, Panaitescu E, Davydov AV, Upmanyu M, Menon L (2013) J Mater Chem C 1(7294):7294–7302.  https://doi.org/10.1039/c3tc31776e Google Scholar
  12. 12.
    Kumar R, Mavi HS, Shukla AK, Vankar VD (2007) J Appl Phys 101:064315.  https://doi.org/10.1063/1.2713367 CrossRefGoogle Scholar
  13. 13.
    Richter RH, Wang ZP, Ley L (1981) Solid State Commun 39(625):625–629.  https://doi.org/10.1016/0038-1098(81)90337-9 CrossRefGoogle Scholar
  14. 14.
    Fauchet PH, Campbell IH (1988) Critical Rev Solid State Mat Sci 14:s79–s101.  https://doi.org/10.1080/10408438808244783 CrossRefGoogle Scholar
  15. 15.
    Ristic D, Ivanda M, Furic K (2009) J Mole Struct 924–926:291–293.  https://doi.org/10.1016/j.molstruc.2008.10.054 CrossRefGoogle Scholar
  16. 16.
    Doerk GS, Carraro C, Maboudian R (2009) Phys Rev B 80(7):073306.  https://doi.org/10.1103/PhysRevB.80.073306 CrossRefGoogle Scholar
  17. 17.
    Qi H, Rendell RW, Glembocki OJ, Prokes SM (2012) J Nanomaterials 946868:9.  https://doi.org/10.1155/2012/946868 Google Scholar
  18. 18.
    Spizzirri PG, Fang J-H, Rubanov S, Gauja E, Prawer S (2010) cond-mat.mtrl-sci arXiv:1002.2692, Nano-Raman spectroscopy of silicon surfaces

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ruđer Bošković Institute, Division of Materials ChemistryLaboratory for Synthesis of New MaterialsZagrebCroatia
  2. 2.Center of Excellence for Advanced Materials and Sensing DevicesResearch Unit New Functional MaterialsZagrebCroatia

Personalised recommendations