Advertisement

Silicon

, Volume 11, Issue 1, pp 383–391 | Cite as

Performance of Capacitance Efficiency on the Extension Space Charge Region of Silicon Solar Cell with Garin Size

  • Gokhan SahinEmail author
  • Ferhat Kaya
Original Paper
  • 13 Downloads

Abstract

This work, based on the grain size concept, is used to study a 3D Modeling of silicon solar cell’s capacitance efficiency on the extension space charge region with garin size. The effect of grain size, incidence angle and depth z (cm) in the base have been discussed. Using incidence angle in a 3D modeling study, the continuity equation was determined. We resolute the photocurrent density, the photovoltage, also we solved the diffusion equation of the minority carriers in the base, the transmitter is not taken in account and we drawed the analytical expression of the density. Plots of silicon solar cell’s capacitance efficiency with the grain size give the maximum solar cell’s capacitance efficiency. Capacitance efficiency affects various parameters of a grain size (g).

Keywords

Grain size Electrical parameters Silicon solar cell Capacitance efficiency Extension space charge region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nam LQ, Rodot M, Nijs J, Ghannam M, Coppye J (1992) Reponse spectrale de photopiles de haut rendement au silicium multicristallin. J Phys III France 2:1305–1316CrossRefGoogle Scholar
  2. 2.
    El Ghitani H, Martinuzzi S (1989) Influence of dislocations on electrical properties of large grained polycrystalline silicon cells. I: model. J Appl Phys 66(4):1717–1722CrossRefGoogle Scholar
  3. 3.
    Dugas J (1994) 3D modelling of a reverse cell made with improved multicrystalline silicon wafers. Sol Energy Mater Sol Cells 32(1):71–88CrossRefGoogle Scholar
  4. 4.
    Furlan J, Slavko A (1985) Approximation of the carrier generation rate in illuminated silicon. Solid State Electron 28(12):1241–1243CrossRefGoogle Scholar
  5. 5.
    Ba B, Kane M, Fickou A, Sissoko G (1993) Excess minority carrier densities and transient short circuit currents in polycrystalline silicon solar cells. Sol Energy Mater Sol Cells 31:33–49CrossRefGoogle Scholar
  6. 6.
    Ecqer B (1993) Energie solaire photovoltaïque: physique des convertisseurs Photovoltaïques. Ecole d’été de l’UNESCO, ParisGoogle Scholar
  7. 7.
    Shockley W (1949) The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors. Bell Syst Technol J 28(3):55Google Scholar
  8. 8.
    Liou JJ, Lindholm FA, Park JS (1987) Forward-voltage capacitance and thickness of p-n junction space-charge regions. IEEE Trans Electron Devices 34:1571CrossRefGoogle Scholar
  9. 9.
    Chawla BR, Gummel H K (1971) Transition region capacitance of diffused p-n junctions. IEEE Trans Electron Devices 3:178CrossRefGoogle Scholar
  10. 10.
    Liou JJ, Lindholm FA (1988) Thickness of p/n junction space-charge layers. J Appl Phys 3:1249CrossRefGoogle Scholar
  11. 11.
    Rabbani KS, Lamb DR (1981) A quick method for the determination of bulk generation lifetime in semiconductors from pulsed MOS capacitance measurements. Solid State Electron 24:661CrossRefGoogle Scholar
  12. 12.
    Jakubowski A (1981) Graphic method of substrate doping determination from C-V characteristics of MIS capacitors. Solid-State Electron 24:985–987.  https://doi.org/10.1016/0038-1101(81)90123-4 CrossRefGoogle Scholar
  13. 13.
    Pernau Th, Fath P, Bucher E (2002) Conference record of the twenty-nineth IEEE photovoltaic specialists conference, New OrleansGoogle Scholar
  14. 14.
    Champness CH, Shukri ZA, Chan CH (1991) Minority carrier diffusion length determination from capacitance measurements in Se–CdO photovoltaic cells. Can J Phys 69(3–4):538–542.  https://doi.org/10.1139/p91-088 CrossRefGoogle Scholar
  15. 15.
    Furlan J, Amon S (1985) Approximation of the carrier generation rate in illuminated silicon. Solid-State Electron 28(12):1241–1243CrossRefGoogle Scholar
  16. 16.
    Samb ML, Dieng M, Mbodji S, Mbow B, Thiam N, Barro FI, Sissoko G (2009) Proceedings of 24th European photovoltaic solar energy conference and exhibition, HamburgGoogle Scholar
  17. 17.
    Diallo HL, Seïdou Maiga A, Wereme A, Sissoko G (2008) New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell. Eur Phys J Appl Phys 42(3):203–211CrossRefGoogle Scholar
  18. 18.
    Barro FI, Mbodji S, Ndiaye M, Maiga AS, Sissoko G (2008) Bulk and surface recombination parameters measurement of silicon solar cell under constant white bias light. J Sci 4:37–41Google Scholar
  19. 19.
    Madougou S, Made F, Boukary MS, Sissoko G (2007) I-V characteristics for bifacial silicon solar cell studied under a magnetic field. Adv Mater Res 118–119:303–312CrossRefGoogle Scholar
  20. 20.
    Sissoko G, Correa A, Nanema E, Diarra MN, Ndiaye AL, Adj A (1998) Recombination parameters determination in a double sided back-surface field silicon solar cell. In: Proceeding of the world renewable energy conference and exhibition, pp 1856–1859Google Scholar
  21. 21.
    Diallo HL, Maïga AS, Werene A, Sissoko G (2008) New approach of both junction and back surface recombination velocities in a 3D modeling study of a polycrystalline silicon solar cell. Eur Phys J Appl Phys 42:203–211CrossRefGoogle Scholar
  22. 22.
    Barro FI, Maiga A S, Wereme A, Sissoko G (2010) Determination of recombination parameters in the base of a bifacial silicon solar cell under constant multispectral light. Phys Chem News 56:76–84Google Scholar
  23. 23.
    Mbodji S, Ly I, Dione MM, Diassé O, Sissoko G (2012) Modeling study of N + /P solar cell resistances from single I–V characteristic curve considering the junction recombination velocity (Sf) Research. J Appl J Eng Technol 1:1–7Google Scholar
  24. 24.
    Umesh KM, Jasprit S (2008) Semiconductor device physics and design. Springer, BerlinGoogle Scholar
  25. 25.
    Dieng A, Zerbo I, Wade M, Maiga AS, Sissoko G (2011) Three-dimensional study of a polycrystalline silicon solar cell: the influence of the applied magnetic field on the electrical parameters. Semiconductor Science and Technology, 26Google Scholar
  26. 26.
    Şahin G Effect of incidence angle on the electrical parameters of vertical parallel junction silicon solar cell under frequency domain. Mosc Univ Phys Bull 71(5):498–507Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electric and Electronic Engineering DepartmentIGDIR UniversityIgdirTurkey
  2. 2.Mechanical Engineering DepartmentIGDIR UniversityIgdirTurkey

Personalised recommendations