Advertisement

Silicon

, Volume 11, Issue 2, pp 869–877 | Cite as

Design of Multi-state DRAM Using Quantum Dot Gate Non-volatile Memory (QDNVM)

  • S. KarmakarEmail author
Original Paper
  • 35 Downloads

Abstract

This paper presents the fabrication of single level cell (SLC), multi-level cell (MLC), triple-level cell (TLC) and quadruple level cell (QLC) using quantum dot gate non-volatile memory (QDNVM). QDNVM can store multiple bits in its discrete quantum dots in the gate region which represents different states of the memory cell. The precise control of charge storage in the discrete quantum dots I the gate region of the QDNVM solves the reliability issues of MLC and TLC. Dynamic Random Access Memory (DRAM) is very compact memory device which needs to refresh periodically. Use of QDNVM will increase the bit storing capability of DRAM. Compact design and increase bit handling capability of designed DRAM will help to increase the information density per unit area.

Keywords

MOSFET Multi-valued logic Non-volatile memory DRAM Quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hachiya S, Johguchi K, Miyaji K, Takeuchi K (2014) Hybrid triple-level-cell/multi-level-cell NAND flash storage array with chip exchangeable method. Jpn Soc Appl Phys 53(4S):04EE04CrossRefGoogle Scholar
  2. 2.
    Hsiao WY, Mei CY, Shen WC, Chih YD, King Y-C, Lin CJ (2014) A new 28 nm high-k metal gate CMOS logic one-time programmable memory cell. Jpn Soc Appl Phys 53(4S):04ED01CrossRefGoogle Scholar
  3. 3.
    Seong NH, Yeo S, Lee H-HS (2013) Tri-level-cell phase change memory. ACM SIGARCH Comput Arch News 41(3):440–451CrossRefGoogle Scholar
  4. 4.
    Karmakar S, Jain FC (2015) Ternary SRAM using quantum dot gate field effect transistor (QDGFET). IET Micro Nano Lett 10(11):621–624CrossRefGoogle Scholar
  5. 5.
    Karmakar S, Suarez E, Gogna M, Jain F (2012) ZnS-ZnMgS-ZnS lattice-matched gate insulator as an alternative for silicon-dioxide on silicon in quantum dot gate FET (QDGFET). J Electron Mater 41(10):2663–2670.  https://doi.org/10.1007/s11664-012-2220-5 CrossRefGoogle Scholar
  6. 6.
    Karmakar S, Gogna M, Jain FC (2016) Application of quantum dot gate nonvolatile memory (QDNVM) in image segmentation. In: Signal, image and video processing, pp 1–8Google Scholar
  7. 7.
    Gogna M, Suarez E, Chan P-Y, Al-Amoody F, Karmakar S, Jain FC (2011) Nonvolatile silicon memory using GeOx – cladded Ge quantum dots self-assembled on SiO2 and lattice-matched II-VI tunnel insulator. J Electron Mater 40(8):769–1774CrossRefGoogle Scholar
  8. 8.
    Karmakar S, Gogna M, Suarez E, Jain FC (2011) Three-state quantum dot gate field-effect transistor in silicon-on-insulator. IET Circuits Devices Syst 9(2):111–18CrossRefGoogle Scholar
  9. 9.
    Karmakar S (2014) Ternary logic gates using quantum dot gate FETs (QDGFETs). Silicon 6(3):169–178CrossRefGoogle Scholar
  10. 10.
    Karmakar S, Gogna M, Suarez E, Alamoody F, Heller E (2009) 3-State behavior of quantum dot gate FETs with lattice matched insulator. In: Nanoelectronic devices for defense and security. Fort LauderdaleGoogle Scholar
  11. 11.
    Karmakar S, Jain FC (2015) Circuit model of different quantum dot based field effect transistors. Silicon 7(1):15–26CrossRefGoogle Scholar
  12. 12.
    Karmakar S, Jain FC (2012) Future semiconductor devices for multi-valued logic circuit design. Mater Sci Appl 3(11):807Google Scholar
  13. 13.
    Karmakar S, Chandy JA, Jain FC (2014) Implementation of six bit ADC and DAC using quantum dot gate non-volatile memory. J Signal Process Syst 75(3):209–216CrossRefGoogle Scholar
  14. 14.
    Karmakar S (2014) Novel three state quantum dot gate FET: fabrication, modeling and application. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    Jain FC, Suarez E, Gogna M, AlAmoody F, Butkiewicus D, Hohner R, Liaskas T, Karmakar S, Chan PY, Miller B, Chandy J, Heller E (2009) Novel quantum dot gate FETs and nonvolatile memories using lattice-matched II-VI gate insulators. J Electron Mater 38(8):1574–1578CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering TechnologyFarmingdale State College-SUNYFarmingdaleUSA

Personalised recommendations