Advertisement

Silicon

, Volume 11, Issue 2, pp 857–867 | Cite as

Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles

  • Ensieh Ghasemian LemraskiEmail author
  • Zohreh Tahmasebi
  • Tahereh Valadbeigi
  • Maryam Hajjami
Original Paper
  • 26 Downloads

Abstract

Zero valent iron nanoparticles have an attracting and ever growing interest in various research fields due to the fascinating potential. In the present work, antimicrobial activity of zero valent iron supported on silicon carbide nanoparticles for the first time investigated. Thermal gravimetric analysis (TGA), dynamic light scattering (DLS), vibrating-sample magnetometer (VSM), Fourier transform infrared spectroscopy FT-IR, scanning electron microscopy with X-ray microanalysis (SEM-EDS), X-ray powder diffraction, transmission electron microscopy (TEM) and N2 adsorption isotherms, indicated that the zero-valent iron was successfully deposited onto the silicon carbide surface. Anti-bacterial activity against human pathogenic bacteria suggest strong practical applications of modified silicon carbide nano particles with other nano particles as a new antimicrobial agent due to their proper pore sizes, high specific areas, and high mechanical and chemical stabilities.

Keywords

Silicon carbide Zero valent iron Bimetallic nanoparticles Antibacterial Vibrating-sample magnetometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for the financial support (Grant number: 32/1012) from the Research Councils of Ilam University.

References

  1. 1.
    Kandi V, Kandi S (2015) Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 17(37)Google Scholar
  2. 2.
    Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499—511CrossRefGoogle Scholar
  3. 3.
    Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 9 (11):1035–1052CrossRefGoogle Scholar
  4. 4.
    Prabu D, Parthiban R (2013) Synthesis and characterization of nanoscale zero valent iron (NZVI) nanoparticles for environmental remediation. Asian J Pharm Tech 3:181–184Google Scholar
  5. 5.
    Zhang R, Li J, Liu C, Shen J, Sun X, Han W, Wang L (2013) Reduction of nitrobenzene using nanoscale zero-valent iron confined in channels of ordered mesoporous silica. Colloids Surf A Physicochem Eng Asp 425:108–114CrossRefGoogle Scholar
  6. 6.
    Auffan M, Achouak W, Rose J, Roncato M, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735CrossRefGoogle Scholar
  7. 7.
    Chen Q, Li J, Wu Y, Shen F, Yao M (2013) Biological responses of Gram-positive and Gram-negative bacteria on ZVI (Fe0), Fe2+ and Fe3+. RSC Adv 3:13835–13842CrossRefGoogle Scholar
  8. 8.
    Chen Q, Gao M, Li J, Shen F, Wu Y, Xu Z, Yao M (2012) Inactivation and mag-Netic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms. Environ Sci Technol 46:2360–2367CrossRefGoogle Scholar
  9. 9.
    You Y, Han J, Chio PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269CrossRefGoogle Scholar
  10. 10.
    Dhiman R, Johnson E, Skou EM, Morgen P, Andersen SM (2013) SiC nanocrystals as Pt catalyst supports for fuel cell applications. J Mater Chem A 1:6030–6036CrossRefGoogle Scholar
  11. 11.
    Ryu A, Jeong SW, Jang A, Choi H (2011) Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl Catal B: Environ 105:128–135CrossRefGoogle Scholar
  12. 12.
    Liu Y, Lowry GV (2006) Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40:6085–6090CrossRefGoogle Scholar
  13. 13.
    Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  14. 14.
    Bai X, Ye ZF, Qu YZ, Li YF, Wang ZY (2009) Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. J Hazard Mater 172:1357–1364CrossRefGoogle Scholar
  15. 15.
    Choi H, Agarwal S, Al-Abed SR (2008) Adsorption and simultaneous dechlorination of PCBsn GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept. Environ Sci Technol 43:488–493CrossRefGoogle Scholar
  16. 16.
    Li Z, Kirk Jones H, Zhang P, Bowman RS (2007) Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets. Chemosphere 68:1861–1866CrossRefGoogle Scholar
  17. 17.
    You Y, Han J, Chio PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269CrossRefGoogle Scholar
  18. 18.
    Dhiman R, Johnson E, Skou EM, Morgen P, Andersen SM (2013) SiC nanocrystals as Pt catalyst supports for fuel cell applications. J Mater Chem A 1:6030–6036CrossRefGoogle Scholar
  19. 19.
    Sandra F, Ballestero A, Nguyen VL, Tsampas MN, Vernoux P, Balan C, Iwamoto Y, Demirci UB, Miele P, Dashb SB, Swain SK (2016) Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion. J Membr Sci 501:79–92CrossRefGoogle Scholar
  20. 20.
    Santos FSD, Lago FR, Fabiana LY, Fonseca V (2017) Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J Mater Res Technol 6(2):178–183CrossRefGoogle Scholar
  21. 21.
    Dua H, Wanga J, Lianga Z, Shena Y, Youb F (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuators A 228:1–8CrossRefGoogle Scholar
  22. 22.
    Youa DJ, Jinb X, Jin Hoe Kimb JH, Jinc S-A, Lee S, Choic KH, Baekc WJ, Paka C, Kimb JM (2015) Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide bimetallic nanoparticles. Int J Hydrogen Energy 40:12352–12361CrossRefGoogle Scholar
  23. 23.
    He C, Zhang F, Yue L, Shang X, Chen J, Hao Z (2012) Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. Appl Catal B: Environ 111–112:46–57CrossRefGoogle Scholar
  24. 24.
    George Robin AT, Karthick Raja Namasivayam S, Raju S (2012) Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. Bull Pharm Med Sci (BOPAMS) 1(1):7–11Google Scholar
  25. 25.
    Prabu D, Parthiban R, Senthil Kumar P, Karthick Raja Namasivayam S (2015) Synthesis, characterization and antibacterial activ ity of nano zero-valent iron impregnated cashew nut shell. Int J Pharm Pharm Sci 7(1):139–141Google Scholar
  26. 26.
    Naseem T, Akhyar Farrukh M (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7CrossRefGoogle Scholar
  27. 27.
    Guardado-Alvarez TM, Devi LS, Vabre JM, Pecorelli TA, Schwartz BJ, Durand JO, Zink JI (2014) Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale 6:4652–4658CrossRefGoogle Scholar
  28. 28.
    Liu HH, Lanphere J, Walker S, Cohen Y (2015) Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation. Nanotechnology 26Google Scholar
  29. 29.
    Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H, Gardea-Torresdey JL (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48:10541–10551CrossRefGoogle Scholar
  30. 30.
    Croissant J, Chaix A, Mongin O, Wang M, Clement S, Raehm L, Zink JI (2014) Two-photon-triggered drug delivery via fluorescent nanovalves. Small 10:1752–1755CrossRefGoogle Scholar
  31. 31.
    Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Torresdey-Gardea JL (2014) Enhanced formation of silver nanoparticles in Ag + -NOM-iron (II, III) systems and antibacterial activity studies. Environ Sci Technol 48:3228–3235CrossRefGoogle Scholar
  32. 32.
    Youns MD, Hoheisel J, Efferth T (2011) Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 12:357–365CrossRefGoogle Scholar
  33. 33.
    Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q (2011) Green synthesis of Au–Pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Mater Lett 65:2989–2991CrossRefGoogle Scholar
  34. 34.
    Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965CrossRefGoogle Scholar
  35. 35.
    Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138CrossRefGoogle Scholar
  36. 36.
    Rico C, Peralta-Videa JR, Gardea-Torresdey JL (2015) Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: a fourier transform infrared (FT-IR) microspectroscopy study. Appl Spectrosc 69:287–295CrossRefGoogle Scholar
  37. 37.
    Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ensieh Ghasemian Lemraski
    • 1
    Email author
  • Zohreh Tahmasebi
    • 1
  • Tahereh Valadbeigi
    • 1
  • Maryam Hajjami
    • 1
  1. 1.Faculty of ScienceIlam UniversityIlamIran

Personalised recommendations