Advertisement

Silicon

, Volume 11, Issue 1, pp 331–337 | Cite as

Study of Optical Properties of Nanocrystalline Zinc Phosphide Thin films

  • C. Bouzara
  • S. KaciEmail author
  • A. Boukezzata
  • F. Kezzoula
  • I. Bozetine
  • A. Keffous
  • M. Trari
  • A. Manseri
  • H. Menari
  • R. Azzouz
  • M. Leitgeb
  • M.-A. Ouadfel
  • L. Talbi
  • K. Benfadel
  • Y. Ouadah
Original Paper
  • 55 Downloads

Abstract

Zinc phosphide (Zn3P2), a II–V group semiconductor compound has long been considered as a very interesting and suitable candidate for several applications especially in photovoltaics. Nanocrystalline Zn3P2 thin films were successfully synthesized on glass and different silicon-based substrates by a combined physico-chemical method. The properties and morphology of Zn3P2 films were investigated. SEM images showed that all films displayed a nanoscale granular, polycrystalline morphology. It depends dramatically on the surface state of the substrate and follows the substrate its morphology. X-ray diffraction (XRD) spectra revealed a preferred orientation of the Zn3P2 nanocrystalline film along the (102) and (405) direction. The transmittance of the Zn3P2 films was found to be high of the order of 87%. The optical gap of the film was determined using the optical transmission spectra and the obtained optical band gap value is 1.96 eV. A decrease of the average reflectance from 15% to 4.25%, after deposition of the nanocrystalline Zn3P2 on a textured Si substrate, was observed. This result was compared to the one obtained with SiNx layer deposited on the same Si substrate. A difference of 1% was noticed. We assume that the combination of nanocrystalline Zn3P2 thin film and a textured Silicon surface could increase the efficiency of photovoltaic silicon solar cell by using Zn3P2 as an antireflection layer.

Keywords

Zn3P2 nanoparticles Thin film Optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was completed thanks to the National Funds of Research, DGRSDT/MESRS (Algeria).

References

  1. 1.
    Vasekar SP, Dhakal TP (2013) Thin film solar cells using earth-abundant materials, vol 145. Solar Cells-Res Appl Perspect.  https://doi.org/10.5772/51734
  2. 2.
    Henkes EA, Schaak RE (2007) Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem Mater 19:4234.  https://doi.org/10.1021/cm071021w CrossRefGoogle Scholar
  3. 3.
    Katsube R, Hayashi H, Nagaoka A, Yoshino K, Nose Y, Shirai Y (2016) Growth and characterization of indium-doped Zn3 P 2 bulk crystals. Jpn J Appl Phys 55:041201.  https://doi.org/10.7567/JJAP.55.041201 CrossRefGoogle Scholar
  4. 4.
    Li W, Gan L, Guo K, Ke L, Wei Y, Li H, Shen G, Zhai T (2016) Self-supported Zn3 P 2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 8:8666.  https://doi.org/10.1039/c5nr08467a CrossRefPubMedGoogle Scholar
  5. 5.
    Bae I-T (2011) Low-temperature synthesis of Zn3 P 2 nanowire. Mater Commun 26:1464.  https://doi.org/10.1557/jmr.2011.180 CrossRefGoogle Scholar
  6. 6.
    Soliman M, Kashyout AB, Osman M, El-Gamal M (2005) Electrochemical deposition of Zn3 P 2 thin film semiconductors on tin oxide substrates. Renew Energy 30:1819.  https://doi.org/10.1016/j.renene.2005.01.004 CrossRefGoogle Scholar
  7. 7.
    Deiss JL (1988) Amorphous thin films of Zn3 P 2. Phys Scr 37:587.  https://doi.org/10.1088/0031-8949/37/4/016 CrossRefGoogle Scholar
  8. 8.
    Kakishita K, Aihara K, Suda T (1994) Zn3 P 2 photovoltaic film growth for Zn3 P 2/ZnSe solar cell. Sol Energy Mater Sol Cell 35:333.  https://doi.org/10.1016/0927-0248(94)90159-7 CrossRefGoogle Scholar
  9. 9.
    Guha SS (1986) Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells. Appl Phys Lett 49:218.  https://doi.org/10.1063/1.97176 CrossRefGoogle Scholar
  10. 10.
    Vasekar PS, Adusumilli SP, Vanhart D, Dhakal T, Desu S (2012) Development of zinc phosphide as a p-type absorber. In: 38th IEEE photovoltaic specialists conference (PVSC). ISBN: 978-1-4673-0066-7Google Scholar
  11. 11.
    Adusumilli SP, Vasekar PS, Vanhart D, Dhakal T, Westgate CR, Desu S (2011) Development of zinc phosphide as an absorber using chemical reflux technique. Mater Res Soc Symp Proc 1387:1239.  https://doi.org/10.1557/opl.2012.1239 CrossRefGoogle Scholar
  12. 12.
    Dutkiewlcz J (1991) The P-Zn (Phosphorus-Zinc) system. J Phase Equil 12:435.  https://doi.org/10.1007/BF02645963 CrossRefGoogle Scholar
  13. 13.
    Chen JH, Tai MF, Chi KM (2004) Catalytic synthesis, characterization and magnetic properties of iron phosphide nanowires. J Mater Chem 14:296.  https://doi.org/10.1039/b311943b CrossRefGoogle Scholar
  14. 14.
    Khanna PK, Jun KW, Hong KB, Baeg JO, Mehrotra GK (2005) Colloidal synthesis of indium nanoparticles by sodium reduction method. Mater Chem Phys 92:54.  https://doi.org/10.1016/j.matlet.2004.11.050 CrossRefGoogle Scholar
  15. 15.
    Chiang RK, Chiang RT (2007) Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg Chem 46:369.  https://doi.org/10.1021/ic061846s CrossRefPubMedGoogle Scholar
  16. 16.
    Si Ahmed Y, Hadjersi T, Chaoui R (2016) Fabrication of pyramid/nanowire binary structure on n-type silicon using chemical etching. Act Phys Pol A 130:385.  https://doi.org/10.1693/APhysPolA.130.385 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • C. Bouzara
    • 1
    • 2
  • S. Kaci
    • 1
    Email author
  • A. Boukezzata
    • 1
  • F. Kezzoula
    • 1
  • I. Bozetine
    • 1
  • A. Keffous
    • 1
  • M. Trari
    • 2
  • A. Manseri
    • 1
  • H. Menari
    • 1
  • R. Azzouz
    • 1
  • M. Leitgeb
    • 3
  • M.-A. Ouadfel
    • 1
  • L. Talbi
    • 1
  • K. Benfadel
    • 1
  • Y. Ouadah
    • 1
  1. 1.Research Center on Semiconductor Technology for EnergeticCRTSEAlgiersAlgeria
  2. 2.LSVER Faculty of ChemistryUSTHBAlgiersAlgeria
  3. 3.Institute of Sensor and Actuator SystemsTU WienViennaAustria

Personalised recommendations