, Volume 11, Issue 1, pp 453–458 | Cite as

Evolution of Phase Transformation in Thin Layers of Amorphous Silicon Under Micro/Indented Loading

  • A. TouilEmail author
  • K. Mirouh
Original Paper


The present study aims the presentation of the phase evolution in a thin layer of amorphous silicon intended by loads to localize and to quantify phenomena during the phase transformation. To reach these objectives, Vickers micro/indentation is used applying different values of force on the specimen. In this work three techniques, such as: scanning electron microscope, micro/Raman spectroscopy and x-ray diffraction are used to study the transformation of phases in silicon subjected to different micro/indentation loads. The elaborated experimental work leads to explain obtained results, such as: (1) the correlation between micro/indentation loads and microstructure changes, (2) the behavior of imprint taken from a-Si thin layers of the applied load and (3) the formation of βSi3N4, which depends principally on indented loads. In general, the phase transformation evolution in the thin layer of amorphous silicon was highly established by experimental works.


Thin layers of amorphous silicon Vickers micro/indentation The phase transformation Micro/Raman spectroscopy XRD Scanning electron microscope 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demkowicz MJ, Argon AS (2005) Liquid like atomic environments act as plasticity carriers in amorphous silicon. Phys Rev B 72(1-16):245205CrossRefGoogle Scholar
  2. 2.
    Kerrache A, Mousseau N, Lewis LJ (2011) Amorphous silicon under mechanical shear deformations: shear velocity and temperature effects. Phys Rev B 84:014110.
  3. 3.
    Fusco C, Albaret T, Tanguy A (2010) Role of local order in the smallscale plasticity of modelamorphous materials. Phys Rev E Stat Nonlin Soft Matter Phys 82(6 Pt 2):066116. Epub2010 Dec 21. PubMed PMID: 21230714CrossRefGoogle Scholar
  4. 4.
    Fabian J, Allen PB (1997) Thermal expansion and grüneisen parameters of amorphous silicon: a realistic model calculation. Phys Rev Lett 79(10):1885–1888CrossRefGoogle Scholar
  5. 5.
    Ishimaru M (2002) Atomistic simulations of structural relaxation processes in amorphous silicon. J J Appl Phys 91(2):686–689CrossRefGoogle Scholar
  6. 6.
    Marinov M, Zotov N (1997) Model investigation of the Raman spectra of amorphous silicon. Phys Rev B 55(5):2938–2944CrossRefGoogle Scholar
  7. 7.
    Muthmann S, Köhler F, Carius R, Gordijn A (2010) Structural order on different length scales in amorphous silicon investigated by Raman spectroscopy. Physica Status Solid 207(3):544–547CrossRefGoogle Scholar
  8. 8.
    Vink RLC, Barkema GT, van der Weg WF (2001) Raman spectra and structure of amorphous Si. Phys Rev B 63:115210CrossRefGoogle Scholar
  9. 9.
    Zotov N, Marinov M, Mousseau N, Barkema G (1999) Dependence of the vibrational spectra of amorphous silicon on the defect concentration and ring distribution. J Phys Cond Matter 11:9647–9658CrossRefGoogle Scholar
  10. 10.
    Dominich V, Gogotsi Y (2002) Phase transformations in silicon under contact loading. Rev Adv Mater Sci 3:1–36CrossRefGoogle Scholar
  11. 11.
    Wu YQ, Huang H, Zou J, Zhang LC, Dell JM (2010) Nanoscratch-induced phase transformation of monocrystalline. Si Scripta Mater 63:847–850CrossRefGoogle Scholar
  12. 12.
    Ruffell KS, Bradby J, Williams J (2011) Room temperature writing of electrically conductive and insulating zones in silicon by nanoindentation. Appl Phys Lett 98:052105–052105CrossRefGoogle Scholar
  13. 13.
    Kulshreshtha KP, Youssef KM, Rozgonyi G (2012) Nanoindentation: a tool to investigate crack propagation related phase transitions in PV silicon. Sol Energ Mat Sol Cells 96:166–72CrossRefGoogle Scholar
  14. 14.
    Pharr GM, Oliver WC, Harding DS (1991) New evidence for a pressureinduced phase transformation during the indentation of silicon. J Mater Res 6:1129–1130CrossRefGoogle Scholar
  15. 15.
    Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading, 7. Appl Phys 81(7).
  16. 16.
    Gogotsi Y, Baek C, Kirscht F (1999) Raman microspectroscopy study of processing induced phase transformations and residual stress in silicon. Semicond Sci Technol 14:936–944CrossRefGoogle Scholar
  17. 17.
    Bradby JE, Williams JS, Swain MV (2003) In situ electrical characterization of phase transformations in Si during indentation. Phys Rev B 67:085205CrossRefGoogle Scholar
  18. 18.
    lmai M, Mitamura T, Yaoita K, Tsuji K (1996) Pressureinduced phase transition of crystalline and amorphous silicon and germanium at low temperatures. High Press Res 15:167–189CrossRefGoogle Scholar
  19. 19.
    Crain J, Ackerland GJ, Maclean JR, Piltz RO, Hatton PD et al (1994) Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B 50(17):13043. CrossRefGoogle Scholar
  20. 20.
    Ge D, Domnich V et al (2000) Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl Phys Lett 77(23):3749–3751. CrossRefGoogle Scholar
  21. 21.
    Kulshreshtha KP, Youssef KM, Rozgonyi G (2012) Nano-indentation: A tool to investigate crack propagation related phase transitions in PV silicon. Sol Energ Mat Sol Cells 96:166–172CrossRefGoogle Scholar
  22. 22.
    Gridneva V, Milman YV, Trefilov VI (1972) Phase transition in diamond-structure crystals during hardness measurements. Phys Status Solidi A 14:77CrossRefGoogle Scholar
  23. 23.
    Gerk AP, Tabor D (1978) Indentation hardness and semiconductormetal transition of germanium and silicon. Nature 271:732–733CrossRefGoogle Scholar
  24. 24.
    Clarke DR, Kroll MC, Kirchner PD, Cook RF, Hockey BJ (1988) Amorphization andconductivity of silicon and germanium induced by indentation. Phys Rev Lett 60:2156–2159CrossRefGoogle Scholar
  25. 25.
    Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2000) Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl Phys Lett 77:3749–3751CrossRefGoogle Scholar
  26. 26.
    Tsui TY, Pharr GM (2005) Indentationinduced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behaviour. Acta Mater 53:1759–1770CrossRefGoogle Scholar
  27. 27.
    Chong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation. Nanotechnology 11:173–180CrossRefGoogle Scholar
  28. 28.
    Astala R, Kaukonen M, Nieminen RM, Heine T (2000) Nanoindentation of silicon surfaces: moleculardynamics simulations of atomic force microscopy. Phys Rev B 61(4):2973–2980. ISSN 1550-235X (electronic). CrossRefGoogle Scholar
  29. 29.
    SanzNavarro CF, Kenny SD, Smith R (2004) Atomistic simulations of structural transformations of silicon surfaces under nanoindentation. Nanotechnology 15:692–697CrossRefGoogle Scholar
  30. 30.
    Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9):2259–2265CrossRefGoogle Scholar
  31. 31.
    Lin YH, Jian SR, Lai YS, Yang PF (2008) Molecular dynamics simulation of nanoindentationinduced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res Lett 3:71–75CrossRefGoogle Scholar
  32. 32.
    Goel S, Faisal NH, Luo X, Yan J, Agrawal A (2014) Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J Phys D Appl Phys 47:275304CrossRefGoogle Scholar
  33. 33.
    Zhao HW, Zhang P, Shi CL, Liu C, Han L, Cheng HB, Ren LQ (2014) Molecular dynamics simulation of the crystal orientation and temperature influences in the hardness of monocrystalline silicon. J Nanomater 2014:8, Article ID 365642
  34. 34.
    Du X, Zhao H, Zhang L, Yang Y, Xu H, Fu H, Li L (2015) Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation atcryogenic temperatures and room temperature. Sci Rep 5:16275CrossRefGoogle Scholar
  35. 35.
    Lebouvier D, Gilormini P, Felder E (1985) A kinematic solution for plane–strain indentation of a bi–layer. J Phys D Appl Phys 18:199–210CrossRefGoogle Scholar
  36. 36.
    Muraki N, Katagiri G, Sergo V, Pezzotti G, Nishida T (1997) Mapping of residual stresses around an indentation in β-Si3, N4 using Raman spectroscopy. J Mater Sci 32(20):5419–5423CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Stukowski A, Urbassek HM (2016) Interplay of dislocationbased plasticity and phase transformation during Si nanoindentation. Comput Mater Sci 119:82–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de Physique, Laboratoire des Couches Minces et InterfacesUniversité Constantine 1ConstantineAlgeria

Personalised recommendations