Advertisement

Silicon

, Volume 11, Issue 1, pp 67–75 | Cite as

Removal of SiC from Silicon After Electron Beam Melting Technique on Industrial Scale

  • H. M. Noor ul Huda Khan AsgharEmail author
  • Zaheer Abbas Gilani
  • Muhammad Naeem Anjum
  • Peng Wang
  • Yi Tan
  • Shuang Shi
  • Dachuan Jiang
  • Shiqiang Qin
Original Paper
  • 18 Downloads

Abstract

Carbon and their compounds were removed successfully through electron beam melting (EBM), so that those areas (contaminated with carbon) of ingot were recycled and reused. During EBM process, the numerical simulation results show that there is great temperature gradient existing in the melt. During EBM, the melt near copper crucible shows low temperature and bad fluidity. Carbon in silicon melt flows, precipitated and gathered in this area so that it is separated. The flow mechanism of SiC in silicon melt was investigated. After EBM, carbon enriches in the form of SiC at the bottom of the ingot but not in the center. This technology is applied on industrial scale EBM equipment. The results show that a majority of SiC was deposited in the bottom of the refining crucible and the carbon contaminations are not found in the most of the area of the solidified ingot in crucible.

Keywords

Electron beam melting Multi crystalline silicon Redistribution of SiC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qi XF, Yu QH, Zhao WH, Liang XQ, Zhang J, Liu LJ (2014) Sol Energy Mater Sol Cells 130:118–123CrossRefGoogle Scholar
  2. 2.
    Stuckelberger M, Riesen Y, Despeisse M, Schuttauf JW, Haug FJ, Ballif C (2014) J Appl Phys 116(9):094503CrossRefGoogle Scholar
  3. 3.
    Xiao SQ, Xu SY (2014) Crit Rev Solid State Mater Sci 39(4):277–317CrossRefGoogle Scholar
  4. 4.
    Wolny F, Krause A, Fischer G (2014) In: Proceedings of the 4th international conference on crystalline silicon photovoltaics (Siliconpv 2014), vol 55, pp 618–623Google Scholar
  5. 5.
    Matsui T, Kondo M (2013) Sol Energy Mater Sol Cells 119:156–162CrossRefGoogle Scholar
  6. 6.
    Gilani ZA, Warsi MF, Khan MA, Shakir I, Shahid M, Anjum MN (2015) Physica E: Low-dimensional Systems and Nanostructures 73:169–174CrossRefGoogle Scholar
  7. 7.
    Rehman J, Iqbal T, Tailor R, Majid A, Ashraf J, Khan I, Afzal M, Ibbott G (2015) Int J Cancer Therapy Oncol 3(4)Google Scholar
  8. 8.
    Coletti G (2013) Prog Photovolt 21(5):1163–1170Google Scholar
  9. 9.
    Kuan TM, Huang CC, Wu LG, Yu CY (2013) In: 2013 IEEE 39th photovoltaic specialists conference (Pvsc), pp 2221–2223Google Scholar
  10. 10.
    Blakers A, Zin N, McIntosh KR, Fong K (2013) In: Pv Asia pacific conference 2012, vol 33, pp 1–10Google Scholar
  11. 11.
    Gilani ZA, Warsi MF, Anjum MN, Shakir I, Naseem S, Riaz S, Khan MA (2015) J Alloys Compd 639:268–273CrossRefGoogle Scholar
  12. 12.
    ur Rehman J, Tailor RC, Isa M, Afzal M, Chow J, Ibbott GS (2015) Med Dosim 40(1):70–75CrossRefGoogle Scholar
  13. 13.
    Ebong A, Hankey D, Yang L (2013) In: 2013 10th international conference on high capacity optical networks and enabling technologies (Honet-Cns), pp 66–71Google Scholar
  14. 14.
    Kwon JY, Lee DH, Chitambar M, Maldonado S, Tuteja A, Boukai A (2012) Nano Lett 12 (10):5143–5147CrossRefGoogle Scholar
  15. 15.
    Jouini A, Ponthenier D, Lignier H, Enjalbert N, Marie B, Drevet B, Pihan E, Cayron C, Lafford T, Camel D (2012) Prog Photovolt 20(6):735–746CrossRefGoogle Scholar
  16. 16.
    Huang JY, Lin CY, Shen CH, Shieh JM, Dai BT (2012) Sol Energy Mater Sol Cells 98:277–282CrossRefGoogle Scholar
  17. 17.
    Hsiao TH, Shieh JM, Yu PC, Shen CH, Kao MH, Chiou UP, Hsieh WH (2012) In: 2012 38th IEEE photovoltaic specialists conference (Pvsc), pp 1201–1204Google Scholar
  18. 18.
    Khedher N, Hajji M, Bouaicha M, Boujmil MF, Ezzaouia H, Bessais B, Bennaceur R (2002) Solid State Commun 123(1–2):7–10CrossRefGoogle Scholar
  19. 19.
    Li XP, Xiao YJ, Bang JH, Lausch D, Meyer S, Miclea PT, Jung JY, Schweizer SL, Lee JH, Wehrspohn RB (2013) Adv Mater 25(23):3187–3191CrossRefGoogle Scholar
  20. 20.
    Sasaki H, Kobashi Y, Nagai T, Maeda M (2013) Adv Mater Sci Eng 857196Google Scholar
  21. 21.
    Noor Ul Huda Khan Asghar H, Shi S, Jiang D, Tan YI (2015) Bull Mater Sci 38(5):1429–1433CrossRefGoogle Scholar
  22. 22.
    Asghar HMNUK, Gilani ZA, Awan MS, Ahmad I, Tan Y (2015) Arab J Sci Eng 40(1):263–268CrossRefGoogle Scholar
  23. 23.
    Asghar HMNUK, Tan Y, Shi S, Jiang DC, Qin SQ, Liao J, Wen ST, Dong W, Liu Y (2014) Appl Phys Mater A Sci Process 115(3):753–757CrossRefGoogle Scholar
  24. 24.
    Chen N, Liu B, Qiu S, Liu G, Du G (2010) Mater Sci Semicond Process 13(4):231–238CrossRefGoogle Scholar
  25. 25.
    Grun R (1979) J Cryst Growth 46(1):143–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • H. M. Noor ul Huda Khan Asghar
    • 1
    • 2
    • 3
    Email author
  • Zaheer Abbas Gilani
    • 3
  • Muhammad Naeem Anjum
    • 4
  • Peng Wang
    • 1
    • 2
  • Yi Tan
    • 1
    • 2
  • Shuang Shi
    • 1
    • 2
  • Dachuan Jiang
    • 1
    • 2
  • Shiqiang Qin
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.Key Laboratory for Solar Energy Photovoltaic System of Liaoning ProvinceDalianChina
  3. 3.Department of PhysicsBalochistan University of Information Technology, Engineering & Management SciencesQuettaPakistan
  4. 4.Department of PhysicsThe Islamia University of BahawalpurBahawalpurPakistan

Personalised recommendations