Advertisement

Silicon

, Volume 11, Issue 1, pp 313–322 | Cite as

Investigation of TiO2 Nanoparticles: Thermal Kinetics and Gamma Radiation Effects

  • A. F. MagedEmail author
  • H. M. Hosni
  • S. A. Fayek
  • M. Amin
  • H. Osman
  • L. A. M. Nada
Original Paper
  • 34 Downloads

Abstract

This paper is part of a research project to develop natural dye-sensitized solar cells. The behavior of surface water, especially the adsorption and dissociation characteristics, is a key to understanding and promoting photo-catalytic and biomedical applications of titanium dioxide materials. Using Thermal Gravimetry Analysis, we study the interaction between water and TiO2 nanoparticles surfaces that are of interest to experiments calculations. The results show that TiO2 nanoparticles surfaces demonstrate water dissociation observed on the surface and in interlayer space. It is noticed that at 600 oC the mass loss reaches the value 1.1% after sintering and after irradiation. Gamma irradiation exhibited improved thermal stability of TiO2 nanopowder to be good dye absorber.

Keywords

Nano-oxides Thermal kinetics Dehydration Irradiation effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodríguez JA, Fernández-García M (2007) Synthesis, properties and applications of oxide nanomaterials. Wiley, New Jersey, pp 137–164Google Scholar
  2. 2.
    Maged AF, Nada LA, Amin M (2015) Phys Sci Int J 7(1):20–27Google Scholar
  3. 3.
    Hagfeldt A, Grätzel M (1995) Chem Rev 95(1):49–68Google Scholar
  4. 4.
    Zhang H, Banfield JF (1999) Am Mineral 84:528–535Google Scholar
  5. 5.
    Davar F, Salavati-Niasari M, Fereshteh Z (2010) J Alloys Compd 496(1):638–643Google Scholar
  6. 6.
    Sakka Y, Suzuki TS, Morita K, Nakano K, Hiraga K (2001) Scripta Materialia 44(8-9):2075–2078Google Scholar
  7. 7.
    Korostynska O, Arshak K, Morris D, Jafer E, Arshak A (2008) Sensors Actuators A Phys 142:28–33Google Scholar
  8. 8.
    Arshak K, Korostynska O (2006) Mater Sci Eng B 133:1–7Google Scholar
  9. 9.
    Chettibi S, Keghouche N, Benguedouar Y, Bettahar MM, Belloni J (2013) Catalysis Lett 143(11):1166–1174Google Scholar
  10. 10.
    Badhwar GD (1999) Radiat Meas 30(3):401–414PubMedGoogle Scholar
  11. 11.
    Badhwar GD (1997) Radiat Res 148(5):2343–2349Google Scholar
  12. 12.
    Hayashi T, Doke T, Kikuchi J, Takeuchi R, Hasebe N, Ogura K, Nagaoka S, Kato M, Bahdwar GD (1996) Radiat Meas 26(6):935–945PubMedGoogle Scholar
  13. 13.
    Maged AF, Wahab LA, El-Kholy IA (1998) J Mater Sci 33:3331–3335Google Scholar
  14. 14.
    Maged AF, Montasser KI, Amer HH (1998) J Mate Chem Phys 56(2):184–188Google Scholar
  15. 15.
    Maged AF, Amin YM, Durrani SA (1992) J Mater Sci 27:5536–5538Google Scholar
  16. 16.
    Maged AF, Ashry M (2003) J Phys Chem Solid 64(1):1–6Google Scholar
  17. 17.
    Maged AF, Amin GAM, Semary M, Borham E (2010) Thin Solid Films 518:2628–2631Google Scholar
  18. 18.
    Ozawa T (1971) Polymer 12(3):150–158Google Scholar
  19. 19.
    Coats AW, Redfern JP (1964) Nature 201:68–69Google Scholar
  20. 20.
    Friedman HL (1965) J Polymer Sci 6C:183–195Google Scholar
  21. 21.
    Chen M, Straatsma TP, Dixon DA (2015) J Phys Chem A 119(46):11406–11421PubMedGoogle Scholar
  22. 22.
    Khawam A, Flanagan DR (2006) J Pharm Sci 95:472PubMedGoogle Scholar
  23. 23.
    Vyazovkin S, Dranca IJM (2005) Phys Chem B 109:18637Google Scholar
  24. 24.
    Jones AR, Winter R, Florian P, Massiot D (2005) J Phys Chem B 109:4324PubMedGoogle Scholar
  25. 25.
    Bertmer M, Nieuwendaal RC, Barnes AB, Hayes SEJ (2006) Phys Chem B 110:6270Google Scholar
  26. 26.
    Vyazovkin S, Dranca I (2005) J Phys Chem B 109:18637PubMedGoogle Scholar
  27. 27.
    Yu YF, Wang MH, Gan WJ, Tao QS, Li SJ (2004) J Phys Chem B 108:6208PubMedGoogle Scholar
  28. 28.
    Bendall JS, Ilie A, Welland ME, Sloan J, Green MLH (2006) J Phys Chem B 110:6569PubMedGoogle Scholar
  29. 29.
    Vyazovkin S, Dranca I (1981) J Phys Chem B 108(1):2004Google Scholar
  30. 30.
    Vyazovkin S, Dranca I, Fan XW, Advincula R (2004) J Phys Chem B 108:11672Google Scholar
  31. 31.
    Khawam A, Flanagan DR (2005) Thermochim Acta 436:101Google Scholar
  32. 32.
    Khawam A, Flanagan DR (2005) Thermochim Acta 429:93Google Scholar
  33. 33.
    Khawam A, Flanagan DR (2006) J Phys Chem B 110:17315–17328PubMedGoogle Scholar
  34. 34.
    Mampel KLZ (1940) Phys Chem A 187:235Google Scholar
  35. 35.
    Avrami M (1941) J Chem Phys 9:177–184Google Scholar
  36. 36.
    Erofe’ev BV (1946) Doklady Akademii Nauk SSSR 52:511–514Google Scholar
  37. 37.
    Lopes WS, Morais CRS, Souza AG, Leite VD, de A Firmo BD (2007) J Therm Anal Calorim 87 (3):841–845Google Scholar
  38. 38.
    Pap AE, Kordas K, George TF, Leppavuori S (2004) J Phys Chem B 108:12744–12747Google Scholar
  39. 39.
    Carniti P, Gervasini A, Bennici S (2005) J Phys Chem B 109:1528PubMedGoogle Scholar
  40. 40.
    Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice, Published by the Geological Institute of Hungary — Kiadja a Magyar Állami Földtani Intézet, ISBN 978-963-671-288-4, BUDAPEST, 27–30Google Scholar
  41. 41.
    Yariv S (1992) Wettability of clay minerals. In: SCHRADER ME, Loeb GI (eds) Modern approaches to wettability: theory and applications. Plenum Publishing Corporation, New York, pp 279–326Google Scholar
  42. 42.
    Borrely SI, Cruz AC, Del Mastro NL, Sampa MHO, Somessari ES (1998) Prog Nucl Energy 33:3–21Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. F. Maged
    • 1
    Email author
  • H. M. Hosni
    • 1
  • S. A. Fayek
    • 1
  • M. Amin
    • 2
  • H. Osman
    • 2
  • L. A. M. Nada
    • 1
  1. 1.National Center for Radiation Research and Technology, (NCRRT)EAEACairoEgypt
  2. 2.Faculty of Science, Physics DepartmentCairo UniversityGizaEgypt

Personalised recommendations