Advertisement

Silicon

, Volume 11, Issue 1, pp 401–406 | Cite as

Simulation Analysis of Direction Solidification Process with Fixed Partition Block to Grow Multi Crystalline Silicon Ingot

  • S. G. Nagarajan
  • G. Anbu
  • M. Srinivasan
  • K. Aravinth
  • P. RamasamyEmail author
Original Paper
  • 10 Downloads

Abstract

The simulation of Directional Solidification (DS) process without partition block and with partition block has been carried to grow multi crystalline silicon (mc-Si) ingot and the results were compared and analyzed. The melt-crystal interface shape, power consumption and dislocation densities for both furnaces have been analyzed. Their results revealed that the partition block largely influences the shape of the melt-crystal interface of the mc-Si ingot and consumes lower power than the DS furnace without partition block. The partition block in the DS furnace separates the heater region from the heat dissipation region and prevents radiant heat energy loss about 10 to 12 KWh during the solidification process. However the dislocation density in the mc-Si ingot grown with partition block DS furnace is slightly increased due to the higher radial temperature gradient. Since the dislocation density in both cases has not increased higher than 10− 8 1/m2 it will not affect the solar cell conversion efficiency. Here the effect of partition block on melt-crystal interface shape, dislocation density and power consumption in the DS furnace has been analyzed.

Keywords

Numerical simulation Directional solidification Multi-crystalline silicon Partition block 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by Ministry of New and Renewable Energy (MNRE), the Government of India (Order No: 31/58/2013-2014/PVSE2).

References

  1. 1.
    Gao B, Nakano S, Harada H, Miyamura Y, Sekiguchi T, Kakimoto K (2012) J Cryst Growth 352:47–52.  https://doi.org/10.1016/j.jcrysgro.2011.11.084 CrossRefGoogle Scholar
  2. 2.
    Sopory B, Rupnowski P, Mehta V, Budhraja V, Johnston S, Call N, Moulinho H, Al-Jassim M (2009) Conference paper NRWL/CP-520-45012Google Scholar
  3. 3.
    Sanmugavel S, Srinivasan M, Aravinth K, Ramasamy P (2016) AIP Conf Proc 1731:110033.  https://doi.org/10.1063/1.4948054 CrossRefGoogle Scholar
  4. 4.
    Ding C, Huang M, Zhong G, Ming L, Huang X (2014) J Cryst Growth 387:73–80CrossRefGoogle Scholar
  5. 5.
    Aravindan G, Srinivasan M, Aravinth K, Ramasamy P (2016) AIP Conf Proc 1731:110040CrossRefGoogle Scholar
  6. 6.
    Chen L, Dai B (2012) J Cryst Growth 354:86–92CrossRefGoogle Scholar
  7. 7.
    Miyazawa H, Liu LJ, Kakimoto K (2008) J Cryst Growth 310:1142CrossRefGoogle Scholar
  8. 8.
    Miyazawa H, Liu LJ, Hisamatsu S, Kakimoto K (2008) J Cryst Growth 310:1034CrossRefGoogle Scholar
  9. 9.
    Schmid E, Poklad A, Heinze V, Meier D, Patzold O, Stelter M (2015) J Cryst Growth 416:1–7CrossRefGoogle Scholar
  10. 10.
    Ding C, Huang M, Zhong G, Liu L, Huang X (2014) Cryst Res Technol 49(5):405–413CrossRefGoogle Scholar
  11. 11.
    Yang X, Lv G, Ma W, Xue H, Chen D (2016) Appl Therm Eng 93:731–741CrossRefGoogle Scholar
  12. 12.
    Wu Z, Zhong G, Zhang Z, Zhou X, Wang Z, Huang X (2015) J Cryst Growth 426:110–116CrossRefGoogle Scholar
  13. 13.
    Autruffe A, Hagen VS, Arnberg L, Di Sabatino M (2015) J Cryst Growth 411:12–18.  https://doi.org/10.1016/j.jcrysgro.2014.10.054 CrossRefGoogle Scholar
  14. 14.
    Chen XJ, Nakano S, Liu LJ, Kakimoto K (2008) J Cryst Growth 310:4330–4335.  https://doi.org/10.1016/j.jcrysgro.2008.07.027 CrossRefGoogle Scholar
  15. 15.
    Kvande R, Mjos O, Ryningen B (2005) Mater Sci Eng A 413–414:5455–5549.  https://doi.org/10.1016/j.msea.2005.09.035 CrossRefGoogle Scholar
  16. 16.
    Yu Q, Liu L, Ma W, Zhong G, Huang X (2012) J Cryst Growth 358:5–11.  https://doi.org/10.1016/j.jcrysgro.2012.07.039 CrossRefGoogle Scholar
  17. 17.
    Ganesan NS, Manickam S, Karuppanan A, Perumalsamy R (2016) Int J Mater Res 107:1–9.  https://doi.org/10.3139/146.111375 CrossRefGoogle Scholar
  18. 18.
    Luo T, Lv Q, Ma W, Wei K, Yang X, Li S (2013) J Cryst Growth 384:122–128.  https://doi.org/10.1016/j/jcrysgro.2013.09.02 CrossRefGoogle Scholar
  19. 19.
    Ma W, Zhong G, Sun L, Yu Q, Huang X, Liu L (2012) Sol Energy Mater Sol Cells 100:231–238CrossRefGoogle Scholar
  20. 20.
    Smirnova OV, Mamedov VM, Kalaev VV (2014) Cryst Growth Design 14(11):5532–5536CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • S. G. Nagarajan
    • 1
  • G. Anbu
    • 1
  • M. Srinivasan
    • 1
  • K. Aravinth
    • 1
  • P. Ramasamy
    • 1
    Email author
  1. 1.SSN Research Center, SSN College of EngineeringChennaiIndia

Personalised recommendations