Advertisement

Silicon

, Volume 10, Issue 6, pp 2845–2854 | Cite as

Preparation of Multilayers Zinc Hydroxystannate Microcapsules and its Application in Flame-Retardant PVC Composites

  • Bin Zhang
  • Yujie Jiang
  • Jian HanEmail author
Original Paper
  • 55 Downloads

Abstract

Although research on halogen free flame retardant has achieved great progress, its practical application is restricted due to high additive amount and low efficency. To solve this problem, multilayers microcapsule [melamine–formaldehyde resin (MF)/silicon dioxide (SiO2)/zinc hydroxystannate (ZHS)] was prepared through a two-step method. Moreover, when 16.40 wt% SiO2/ZHS microcapsules was mixed with poly(vinyl chloride) (PVC) matrix, the obtained PVC composites exhibited a high limited oxygen index (LOI) of 32.5%, showing its excellent flame retardancy. Furthermore, for the compatibility between MF/SiO2/ZHS microcapsules and PVC to be improved, MF was coated to SiO2/ZHS microcapsules by in situ polymerization. When 16.40 wt% MF/SiO2/ZHS microcapsules were mixed with PVC matrix, the obtained PVC composites exhibited a high LOI of 35.5%, showing its high flame retardancy. Therefore, this easily prepared multilayers microcapsule with sufficient flame retardancy in this work, it could have a potential for engineering applications.

Graphical abstract

Taking advantage of microencapsulation strategy to fabricate MF/SiO2/ZHS microcapsules for fire-retardant PVC materials

Keywords

Zinc hydroxystannate Microcapsule Flame retardancy Smoke suppression Poly (vinyl chloride) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li B (2001) An investigation of the smoke suppression and the thermal degradation in the smouldering mode of poly (vinyl chloride) containing a combination of cuprous oxide and molybdenum trioxide. Polym Degrad Stab 74:195–199CrossRefGoogle Scholar
  2. 2.
    Marongiu A, Faravelli T, Bozzano G, Dente M, Ranzi E (2003) Thermal degradation of poly(vinyl chloride). J Analy Appl Pyroly 70:519–553CrossRefGoogle Scholar
  3. 3.
    Xu J, Zhang C, Qu H, Tian C (2005) Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J Appl Polym Sci 98:1469–1475CrossRefGoogle Scholar
  4. 4.
    Li B (2002) A study of the thermal decomposition and smoke suppression of poly(vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux. Polym Degrad Stab 8:349–356CrossRefGoogle Scholar
  5. 5.
    Lu H, Hu Y, Yang L, Wang Z, Chen Z, Fan W (2004) Study of the fire performance of magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene. Macromol Mater Eng 289:984– 989CrossRefGoogle Scholar
  6. 6.
    Liodakis S, Bakirtzis D, Dimitrakopoulos A P (2003) Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermo Acta 399:31–42CrossRefGoogle Scholar
  7. 7.
    Liang S, Neisius N M, Gaan S (2013) Recent developments in flame retardant polymeric coatings. ProgOrgaCoat 76:1642–1665Google Scholar
  8. 8.
    Wu N, Yang R (2011) Effects of metal oxides on intumescent flame-retardant polypropylene. Polym Adv Technol 22:495–501CrossRefGoogle Scholar
  9. 9.
    Feng F, Qian L (2014) The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym Comp 35:301–309CrossRefGoogle Scholar
  10. 10.
    Chen X, Jiao C (2011) Flame retardancy and thermal degradation of intumescent flame retardant polypropylene material. Polym Adv Technol 22:817–821CrossRefGoogle Scholar
  11. 11.
    Seefeldt H, Braun U (2012) A new flame retardant for wood materials tested in wood-plastic composites. MacromolMater Eng 297:814–820CrossRefGoogle Scholar
  12. 12.
    Tai Q, Shan X, Song L, Lo S, Yuen RKK, Hu Y (2014) A polymeric flame retardant and surfactant-free montmorillonite nanocomposites: Preparation and exfoliation mechanism discussion. Polym Comp 35:167–173CrossRefGoogle Scholar
  13. 13.
    Gao Y, Wu J, Wang Q, Wilkie C, O’Hare D (2014) Flame retardant polymer/layered double hydroxide nanocomposites. J Mater Chem A 2:10996–11016CrossRefGoogle Scholar
  14. 14.
    Bradman A, Castorina R, Gaspar F, Nishioka M, Colón M, Weathers W, Egeghy PP, Maddalena R, Williams J, Jenkins PL, Mckone TE (2014) Flame retardant exposures in California early childhood education environments. Chemosphere 116:61–66CrossRefGoogle Scholar
  15. 15.
    Yu L, Chen L, Dong LP, Li LJ, Wang YZ (2014) Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. Rsc Adv 4:17812–17821CrossRefGoogle Scholar
  16. 16.
    Wang B, Sheng H, Shi Y, Hu W, Hong N, Zeng W, Ge H, Yu X, Song L, Hu Y (2015) Recent advances for microencapsulation of flame retardant. Polym DegradStab 113:96–109Google Scholar
  17. 17.
    Hua G, Gang T, Hu W Z, Wang BB, Pan Y, Song L, Hu Y (2015) Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater 294:186–194CrossRefGoogle Scholar
  18. 18.
    Wu W, Qu H, Li Z, Yuan H (2008) Thermal behavior and flame retardancy of flexible poly(vinyl chloride) treated with zinc hydroxystannate and zinc stannate. J VinylAdd Techn 14:10–15CrossRefGoogle Scholar
  19. 19.
    Su X, Yi Y, Tao J, Qi H (2012) Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym Degrad Stab 97:2128–2135CrossRefGoogle Scholar
  20. 20.
    Ning Y, Guo S (2015) Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC. J Appl Polym Sci 77:3119–3127CrossRefGoogle Scholar
  21. 21.
    Basfar AA (2002) Flame retardancy of radiation cross-linked poly(vinyl chloride) (PVC) used as an insulating material for wire and cable. Polym Degrad Stab 77:221–226CrossRefGoogle Scholar
  22. 22.
    Giraud S, Salaün F, Bedek G, Vroman I, Bourbigot S (2010) Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polym Degrad Stab 95:315–319CrossRefGoogle Scholar
  23. 23.
    Salaün F, Creach G, Rault F, Almeras X (2013) Thermo-physical properties of polypropylene fibers containing a microencapsulated flame retardant. Polym Adv Technol 24:236–248CrossRefGoogle Scholar
  24. 24.
    Wang N, Wu Y, Mi L, Zhang J, Li X, Fang Q (2014) The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J ThermAnaly Calorimetry 118:349–357CrossRefGoogle Scholar
  25. 25.
    Zhang M, Wang S, Wang C, Li J (2012) A facile method to fabricate superhydrophobic cotton fabrics. ApplSurfSci 261:561–566Google Scholar
  26. 26.
    Shi Y, Wang Y, Feng X, Yue G, Yang W (2012) Fabrication of superhydrophobicity on cotton fabric by sol–gel. Appl Surf Sci 258:8134–8138CrossRefGoogle Scholar
  27. 27.
    Wang D, Zhang QJ, Zhou KQ, Yang W, Hu Y, Gong XL (2014) The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate). J Hazard Mater 278:391–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang Provincial Key Laboratory of Industrial Textile Materials & Manufacturing Technology, College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations