Silicon

pp 1–5 | Cite as

Effect of Surface Roughness of 316 L Stainless Steel Substrate on the Morphological and Super-Hydrophobic Property of TiO2 Thin Films Coatings

  • Mahdi Mozammel
  • Mohammad Khajeh
  • Nasrollah Najibi Ilkhechi
Original Paper
  • 1 Downloads

Abstract

In this study, TiO2 was coated on 316L stainless steel substrates via sol–gel/ dip coating method. The effects of surface roughness on the physical properties have been investigated. Scanning electron microscopy (FE-SEM), FTIR and X-ray diffraction (XRD) were used to investigate the morphological properties, identification of simple mixtures of organic and inorganic compounds and structure of crystal, respectively. Also, the effect of roughness on the hydrophobic property of coating measured by water contact angle. Water contact angle increased from 142.5 to 168.5 by increasing the roughness. From wettability results indicated that roughness had significant effect on the hydrophobic property of thin films.

Keywords

TiO2 Sol–gel Hydrophobic property Thin film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng Y T, Rodak D E (2005) Appl Phys Lett 86:144101–144103CrossRefGoogle Scholar
  2. 2.
    Zhai L, Cebeci F C, Cohen R E, Rubner M F (2004) Nano Lett 4:1349–1353CrossRefGoogle Scholar
  3. 3.
    Mahadevan L, Pomeau Y (1999) Phys Fluids 11:2449–2453CrossRefGoogle Scholar
  4. 4.
    Quéré D (2005) Nature 435(2005):1168–1169CrossRefGoogle Scholar
  5. 5.
    Tarwal N L, Patil P S (2010) Appl Surf Sci 256:7451–7456CrossRefGoogle Scholar
  6. 6.
    Feng L, Li S, Li Y, Li H, Zhang LL, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2005) Adv Mater 14:1857–1863CrossRefGoogle Scholar
  7. 7.
    Ma M, RH RH, Lowery J L (2005) Langmuir 21:5549–5554CrossRefGoogle Scholar
  8. 8.
    Sarkar D K, Farzaneh M, Paynter R W (2010) Appl Surf Sci 256:3698–3701CrossRefGoogle Scholar
  9. 9.
    Nakajima A, Hashimoto K, Watanabe T (2001) Monatsh Chem 132:31–34CrossRefGoogle Scholar
  10. 10.
    Barthlott W, Neinhuis C (1997) Planta 202:1–8CrossRefGoogle Scholar
  11. 11.
    Gao X, Jiang L (2004) Nature 432:36–42CrossRefGoogle Scholar
  12. 12.
    Qian B T, Shen Z Q (2005) Langmuir 21(2005):9007–9009CrossRefGoogle Scholar
  13. 13.
    Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A (2005) Langmuir 21:7299–7302CrossRefGoogle Scholar
  14. 14.
    Xie Q, Fan G, Zhao N, Guo X, Xu J, Dong J, Zhang L, Zhang Y (2004) Adv Mater 16:1830–1833CrossRefGoogle Scholar
  15. 15.
    Hata S, Kai Y, Yamanaka I, Oosaki H, Hirota K, Yamazaki S (2000) JSAE Rev 21:97–102CrossRefGoogle Scholar
  16. 16.
    Feng Z, Kaiming L, Guoliang W, Hua S, Anmin H (2004) J Cryst Growth 264:297–301CrossRefGoogle Scholar
  17. 17.
    Yu J G, Zhao X J (2001) Mater Res Bull 36:97–107CrossRefGoogle Scholar
  18. 18.
    Barabási AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Najibi Ilkhechi N, Ghobadi N, Yahyavi F (2017) Opt Quant Electron 49:39–48CrossRefGoogle Scholar
  20. 20.
    Davies S, Hall P (1999) J Roy Stat Soc B 61:3–37CrossRefGoogle Scholar
  21. 21.
    Peressadko AGH, Persson BNJ (2005) Phys Rev Lett 95:124301–124305CrossRefGoogle Scholar
  22. 22.
    Zhao Y P, Wang L S, Yu T X (2003) J Adhes Sci Technol 17:519–546CrossRefGoogle Scholar
  23. 23.
    Najibi Ilkhechi N, Ghobadi N (2016) J Mater Sci: Mater Electron 27(11):12050–12059Google Scholar
  24. 24.
    Guan K (2005) Surface Coatings Technol 191:155–160CrossRefGoogle Scholar
  25. 25.
    Wenzel R N (1963) Ind Eng Chem 28:988–994CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mahdi Mozammel
    • 1
  • Mohammad Khajeh
    • 1
  • Nasrollah Najibi Ilkhechi
    • 1
  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations