pp 1–9 | Cite as

Using Silica Coated Nanoscale Zerovalent Particles for the Reduction of Chlorinated Ethylenes

  • Lenka Honetschlägerová
  • Petra Janouškovcová
  • Milica Velimirovic
  • Martin Kubal
  • Leen Bastiaens
Original Paper


The impact of a silica coating on the degradation potential of nanoscale zerovalent iron (nZVI) particles toward a mixture of chlorinated ethylenes is presented. The newly employed stabilization method for nZVI, based on silica deposition from saturated sodium silicate water glass, produces nZVI particles with a similar reactivity as non-stabilized particles. Moreover the removal rate constant kM of trichloroethylene (0.1740 L g−1 d−1 Fe0) and cis-dichloroethylene (0.1045 L g−1 d−1Fe0) was significantly improved (almost by a factor of 2) for stabilized nZVI. X-ray photoelectron spectroscopy (XPS) and Wavelength Dispersive X-ray Fluorescence (WDXRF) analyzes revealed a high durability of silica coating and the coating left at least half of nZVI surface silica free for reaction for more than 5 weeks. The silica coating did not affect the surface composition of silica coated nZVI which was confirmed by the very similar distribution of degradation products and corrosion products (Fe3O4, FeOOH) as was found for non-coated nanoparticles. An enhanced reactivity supplemented with a stable corrosion properties indicates that silica coated nZVI has potential as an efficient remediation agent toward chlorinated ethylenes.


Nanoscale Zerovalent Iron (nZVI) Silica coating Chlorinated ethylenes Degradation Groundwater remediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Technology Agency of the Czech Republic under grant TA02020654.


  1. 1.
    Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48. CrossRefGoogle Scholar
  2. 2.
    Liu YQ, Lowry GV (2006) Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090. CrossRefGoogle Scholar
  3. 3.
    Noubactep C, Care S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Poll 223(3):1363–1382. CrossRefGoogle Scholar
  4. 4.
    Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122. CrossRefGoogle Scholar
  5. 5.
    Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290. CrossRefGoogle Scholar
  6. 6.
    Tosco T, Papini MP, Viggi CC, Sethi R Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod (0).
  7. 7.
    Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193. CrossRefGoogle Scholar
  8. 8.
    Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58(1):166–172. CrossRefGoogle Scholar
  9. 9.
    Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55(1-2):157–162. CrossRefGoogle Scholar
  10. 10.
    Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424. CrossRefGoogle Scholar
  11. 11.
    Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyiaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5(12):2489–2494. CrossRefGoogle Scholar
  12. 12.
    Saleh N, Sirk K, Liu YQ, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57. CrossRefGoogle Scholar
  13. 13.
    Comba S, Dalmazzo D, Santagata E, Sethi R (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2-3):598–605. CrossRefGoogle Scholar
  14. 14.
    Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11(3):635–645. CrossRefGoogle Scholar
  15. 15.
    Sirk KM, Saleh NB, Phenrat T, Kim H-J, Dufour B, Ok J, Golas PL, Matyjaszewski K, Lowry GV, Tilton RD (2009) Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 43(10):3803–3808. CrossRefGoogle Scholar
  16. 16.
    O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. CrossRefGoogle Scholar
  17. 17.
    Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318. CrossRefGoogle Scholar
  18. 18.
    Ni XM, Zheng Z, Hu X, Xiao XK (2010) Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption. J Colloid Interf Sci 341(1):18–22. CrossRefGoogle Scholar
  19. 19.
    Zheng TH, Zhan JJ, He JB, Day C, Lu YF, Mcpherson GL, Piringer G, John VT (2008) Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environ Sci Technol 42(12):4494–4499. CrossRefGoogle Scholar
  20. 20.
    Honetschlagerova L, Janouskovcova P, Kubal M, Sofer Z (2015) Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass. Environ Technol 36(3):358–365. CrossRefGoogle Scholar
  21. 21.
    Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926. CrossRefGoogle Scholar
  22. 22.
    Tee Y-H, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44(18):7062–7070. CrossRefGoogle Scholar
  23. 23.
    Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic Nickel-Iron nanoparticles. Chem Mater 14(12):5140–5147. CrossRefGoogle Scholar
  24. 24.
    Bergna HE, Firment LE, Swartzfager DG (2006) Dense silica coatings on micro and nanoparticles by deposition of monosilicic acid. In: Colloidal silica: fundamentals and applications. CRC Taylor & Francis, Boca Raton, pp 701–711Google Scholar
  25. 25.
    Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. CrossRefGoogle Scholar
  26. 26.
    Stober W, Fink A, Bohn E (1968) Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J Colloid Interf Sci 26(1):62–&. CrossRefGoogle Scholar
  27. 27.
    He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34. CrossRefGoogle Scholar
  28. 28.
    Phenrat T, Liu YQ, Tilton RD, Lowry GV (2009) Adsorbed polyelectrolyte coatings decrease fe-0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43(5):1507–1514. CrossRefGoogle Scholar
  29. 29.
    Klausen J, Vikesland PJ, Kohn T, Burris DR, Ball WP, Roberts AL (2003) Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ Sci Technol 37(6):1208–1218. CrossRefGoogle Scholar
  30. 30.
    Kohn T, Kane SR, Fairbrother DH, Roberts AL (2003) Investigation of the inhibitory effect of silica on the degradation of 1,1,1-trichloroethane by granular iron. Environ Sci Technol 37(24):5806–5812. CrossRefGoogle Scholar
  31. 31.
    Kohn T, Roberts AL (2006) The effect of silica on the degradation of organohalides in granular iron columns. J Contam Hydrol 83(1-2):70–88. CrossRefGoogle Scholar
  32. 32.
    Doong RA, Chen KT, Tsai HC (2003) Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environ Sci Technol 37(11):2575–2581. CrossRefGoogle Scholar
  33. 33.
    Guo J, Jiang DJ, Wu Y, Zhou P, Lan YQ (2011) Degradation of methyl orange by Zn(0) assisted with silica gel. J Hazard Mater 194:290–296. CrossRefGoogle Scholar
  34. 34.
    Oh YJ, Song H, Shin WS, Choi SJ, Kim YH (2007) Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere 66(5):858–865. CrossRefGoogle Scholar
  35. 35.
    Velimirovic M, Larsson P, Simons Q, Bastiaens L (2013) Reactivity screening of microscale zerovalent irons and iron sul?des towards different CAHs under standardized experimental conditions. J Hazard Mater 252-253C:204–212. CrossRefGoogle Scholar
  36. 36.
    Arnold WA, Ball WP, Roberts AL (1999) Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. J Contam Hydrol 40(2):183–200. CrossRefGoogle Scholar
  37. 37.
    Carniato L, Simons Q, Schoups G, Seuntjens P, Bastiaens L (2014) Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.
  38. 38.
    Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30(8):2634–2640. CrossRefGoogle Scholar
  39. 39.
    Miller DJ, Biesinger MC, McIntyre NS (2002) Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?. Surf Interface Anal 33(4):299–305. CrossRefGoogle Scholar
  40. 40.
    Stumm W, Huper H, Champlin RL (1967) Formulation of polysilicates as determined by coagulation effects. Environ Sci Technol 1(3):221–227. CrossRefGoogle Scholar
  41. 41.
    Davis CC, Chen HW, Edwards M (2002) Modeling silica sorption to iron hydroxide. Environ Sci Technol 36(4):582–587. CrossRefGoogle Scholar
  42. 42.
    Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001. CrossRefGoogle Scholar
  43. 43.
    Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211-212(0):112–125. CrossRefGoogle Scholar
  44. 44.
    Dries J, Bastiaens L, Springael D, Agathos SN, Diels L (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39(21):8460–8465. CrossRefGoogle Scholar
  45. 45.
    Honetschlägerová L, Janouškovcová P, Kubal M, Sofer Z Using silica for stabilization of nanoscale zero valent iron. in reviewGoogle Scholar
  46. 46.
    P. J (2014) Reactivity of nano-scale zero-valent iron for in situ remediation of chlorinated ethylenes Dissertation, University of Chemistry and Technology Prague, PragueGoogle Scholar
  47. 47.
    Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles. Environ Sci Technol 34(9):1794–1805. CrossRefGoogle Scholar
  48. 48.
    Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE Dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345. CrossRefGoogle Scholar
  49. 49.
    Elsner M, Chartrand M, Vanstone N, Couloume GL, Lollar BS (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42(16):5963–5970. CrossRefGoogle Scholar
  50. 50.
    Reardon EJ, Fagan R, Vogan JL, Przepiora A (2008) Anaerobic corrosion reaction kinetics of nanosized iron. Environ Sci Technol 42(7):2420–2425. CrossRefGoogle Scholar
  51. 51.
    HonetschlÄgerová L, Janoušxkovcová P, Kubal M (2016) Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. Environ Technol 37(12):1530–1538. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ChemistryUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.Flemish Institute for Technological Research (VITO)MolBelgium
  3. 3.Department of Environmental GeosciencesUniversity of ViennaViennaAustria

Personalised recommendations