Silicon

pp 1–8 | Cite as

Fabrication and Electrical Characteristics of Thioindigo/Silicon Heterojunction

  • N. M. Khusayfan
  • E. F. M. El-Zaidia
  • M. M. El-Nahass
Original Paper
  • 9 Downloads

Abstract

We demonstrate the performance of heterojunction thin films of thioindigo on Silicon which fabricated by using thermal evaporation technique under high vacuum (10− 4 Pa). The dark current–voltage (I–V) characteristics measurement at different temperatures in the range 303–383 K were analyzed in order to explain the conduction mechanism and to evaluate the important device parameters The calculated ideality factor (n) and zero-bias barrier height (φo) showed strong bias dependence. The predominant mechanism of charge transport in thioindigo on silicon was found to be thermionic emission at low voltage and space charge limited conduction, SCLC dominated by single trap distribution at the higher voltage. At reverse applied voltage, it is found that p-Si is the main source of the reverse current due to generation-recombination. The capacitance–voltage (C–V) characteristics of in these devices were measured at high frequency (1 MHz). The dependence of C− 2 vs. V for the heterojunctions for thioindigo/Si was found to be almost linear which indicates an abrupt heterojunction and (C-V) parameters was obtained. The parameter of I–V characteristics under white illumination was calculated.

Keywords

Thin films Photovoltaic Thioindigo Electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (022-363-D1434). The authors, therefore, gratefully acknowledge with the DSR technical and financial support.

References

  1. 1.
    Yeha N, Yeh P (2013) Organic solar cells: their developments and potentials. Renew Sust Energ Rev 21:421CrossRefGoogle Scholar
  2. 2.
    Galagan Y, Moet DJD, Hermes DC, Blom PWM, Andriessen R (2012) Large areaITO-free organic solar cells on steel substrate. Org Electron 13:3310CrossRefGoogle Scholar
  3. 3.
    Yang Q, Yang D, Zhao S, Huang Y, Xu Z, Liu X, Gong W, Fan X, Huang Q, Xu X (2013) Appl Surf Sci 284:849–854CrossRefGoogle Scholar
  4. 4.
    Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161CrossRefGoogle Scholar
  5. 5.
    Kumar P, Jain SC, Kumar V, Chand S, Tandon RP (2009) Appl Phys A 94:2816CrossRefGoogle Scholar
  6. 6.
    Jain SC, Willander M, Kumar V (2007) Conducting organic materials and devices. Academic Press, San DiegoCrossRefGoogle Scholar
  7. 7.
    Lin Y, Fan H, Li Y, Zhan X (2012) Adv Mater 24:3083CrossRefGoogle Scholar
  8. 8.
    Bernède JC, Godoy A, Cattin L, Diaz FR, Morsli M, Valle MAD (2010) Organic solar cells performances improvement induced by interface buffer layers. In: Rugescu RD (ed) Solar energy. Intech, Croatia, p 432Google Scholar
  9. 9.
    Kim SY, Lee K, Chin BD, Yu J-W (2009) Sol Energy Mater Sol Cell 92:129CrossRefGoogle Scholar
  10. 10.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) Adv Mater 22:E135CrossRefGoogle Scholar
  11. 11.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Science 317:222CrossRefGoogle Scholar
  12. 12.
    Wyman GM, Zarnegar BM (1973) J Phys Chem 77:831CrossRefGoogle Scholar
  13. 13.
    Lemieux RP (2004) Chem Rec 3:288CrossRefGoogle Scholar
  14. 14.
    Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpete EAJ (2006) Am Chem Soc 128:2072CrossRefGoogle Scholar
  15. 15.
    Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072CrossRefGoogle Scholar
  16. 16.
    Tanouea Y, Sakatab K, Hashimotob M, Hamadaa M, Kaia N, Nagai T (2004) Dyes Pigments 62:101CrossRefGoogle Scholar
  17. 17.
    Rahman ANA, Mansour AF (1985) J Phys D: Appl Phys 18:49CrossRefGoogle Scholar
  18. 18.
    Ibrahima M, El-Nahass MM, Kamel MA, El-Barbary AA, Wagner BD, El-Mansy MAM (2013) Spectrochim Acta A Mol Biomol Spectrosc 113:332CrossRefGoogle Scholar
  19. 19.
    Uslu H, Bengi A, Çetin SŞ, Aydemir U, Altındal Ş, Aghaliyeva ST, Özçelik S (2010) J Alloys Compd 507:190CrossRefGoogle Scholar
  20. 20.
    Sze MS (1981) Physics of semiconductor devices, 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    El-Nahass MM, Abd-El-Rahman KF, Farag AAM, Darwish AAA (2005) Org Electron 6:129CrossRefGoogle Scholar
  22. 22.
    Farag AAM (2009) Appl Surf Sci 255:3493CrossRefGoogle Scholar
  23. 23.
    Dimitridis CA (1991) J Appl Phys 70(10):5423CrossRefGoogle Scholar
  24. 24.
    Shafai TS, Anthopoulos TD (2001) Thin Solid Films 398–399:361CrossRefGoogle Scholar
  25. 25.
    Çetinkara HA, Türüt A, Zengín DM, Erel Ş (2003) Appl Surf Sci 207:190CrossRefGoogle Scholar
  26. 26.
    Forrest SR, Kaplan ML, Schmidt PM (1984) J Appl Phys 56:543CrossRefGoogle Scholar
  27. 27.
    Ahmed MM, Karimov KS, Moiz SA (2004) IIEEE Trans Electron Devices 51:121CrossRefGoogle Scholar
  28. 28.
    Abdel-Malik TG, Abdel-Latif RM (1995) Phys B: Condens Matter 205:59CrossRefGoogle Scholar
  29. 29.
    KılıÀçoğlu T, Aydın ME, Ocak YS (2007) Phys B 388:244CrossRefGoogle Scholar
  30. 30.
    Ocak YS, Kulakci M, KılıÀçoğlu T, Turan R, Akkılıç K (2009) Synthetic Met 159:1603CrossRefGoogle Scholar
  31. 31.
    Rand BP, Genoe J, Heremans P, Poortmans J (2007) Prog Photovolt: Res Appl 15:659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • N. M. Khusayfan
    • 1
  • E. F. M. El-Zaidia
    • 2
  • M. M. El-Nahass
    • 2
  1. 1.Physics Department, Faculty of Science – AL FaisaliahKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations