Advertisement

Silicon

, Volume 10, Issue 6, pp 2491–2497 | Cite as

One-Pot, Three-Component Synthesis of 2,3-Dihydro-4(1H)-Quinazolinones Catalyzed by Perchlorated Zirconia (HClO4/ZrO2) Nanoparticles as a Solid Acid Catalyst

  • Zeinab HamidiEmail author
  • Mohammad Abdollahi-Alibeik
  • Seyed Yousef Mosavian
Original Paper
  • 45 Downloads

Abstract

Mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones were obtained in good yields via a one-pot, three component reaction of isatoic anhydride and aromatic aldehydes with ammonium acetate or primary amines in the presence of perchlorated zirconia (HClO4/ZrO2) nano particles as an efficient solid acid catalyst under solvent-free conditions. Simple workup and reusability of the catalyst are advantages of this method.

Keywords

Perchlorated zirconia Nanoparticles 2,3-dihydroquinazolin-4(1H)-ones Solid acid catalyst Reusability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are thankful to the Yazd University Research Council for partial support of this work.

References

  1. 1.
    Kung PP, Casper MD, Cook KL, Wilson-Lingardo L (1999) Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J Med Chem 42:4705–4713CrossRefGoogle Scholar
  2. 2.
    Dandia A, Singh R, Sarawgi P (2005) Green chemical multi-component one-pot synthesis of fluorinated 2,3-disubstituted quinazolin-4(3H)-ones under solvent-free conditions and their anti-fungal activity. J Fluorine Chem 126:307–312CrossRefGoogle Scholar
  3. 3.
    Xia Y, Yang Z-Y, Hour M-J, Kuo S-C, Xia P, Bastow KF, Nakanishi Y (2001) Antitumor agents. Part 204:1 synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett 11:1193–1196CrossRefGoogle Scholar
  4. 4.
    Jiang JB, Hesson DP, Dusak BD (1990) Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J Med Chem 33:1721–1728CrossRefGoogle Scholar
  5. 5.
    Abdollahi-Alibeik M, Shabani E (2011) Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by zirconium (IV) chloride as a mild and efficient catalyst. Chin Chem Lett 22:1163–1166Google Scholar
  6. 6.
    Davoodnia A, Allameh S, Fakhari AR, Tavakoli-Hoseini N (2010) Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin Chem Lett 21:550–553CrossRefGoogle Scholar
  7. 7.
    Rostami A, Tavakoli A (2011) Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett 22:1317–1320CrossRefGoogle Scholar
  8. 8.
    Zhang J, Zhao Y, Luo W, Yu XH, Wang J, Pan Y (2010) Photochemical reaction of magnesium tetraphenyl porphyrin with sulfur dioxide. Chin Chem Lett 21:778–789CrossRefGoogle Scholar
  9. 9.
    Shaabani A, Maleki A, Mofakham H (2008) Click reaction: highly efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Synth Commun: Int J Rapid Commun Synth Org Chem 38:3751– 3759CrossRefGoogle Scholar
  10. 10.
    Shi D, Rong L, Wang J, Zhuang Q, Wang X, Hu H (2003) Synthesis of quinazolin-4(3H)-ones and 1,2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent. Tetrahedron Lett 44:3199–3201CrossRefGoogle Scholar
  11. 11.
    Abdel-Jalil RJ, Voelter W, Saeed M (2004) A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett 45:3475–3476CrossRefGoogle Scholar
  12. 12.
    Devassy BM, Halligudi SB (2006) Effect of calcination temperature on the catalytic activity of zirconia-supported heteropoly acids. J Mol Catal A Chem 253:8–15CrossRefGoogle Scholar
  13. 13.
    Tanabe K (1985) Surface and catalytic properties of ZrO2. Mater Chem Phys 13:347–364CrossRefGoogle Scholar
  14. 14.
    Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20:199–217CrossRefGoogle Scholar
  15. 15.
    Bampenrat A, Meeyoo V, Kitiyanan B (2008) Catalytic oxidation of naphthalene over CeO2–ZrO2 mixed oxide catalysts. Catal Commun 9:2349–2352CrossRefGoogle Scholar
  16. 16.
    Liu S, Zhang X, Li J, Zhao N, Wei W, Sun Y (2008) Preparation and application of stabilized mesoporous MgO–ZrO2 solid base. Catal Commun 9:1527–1532CrossRefGoogle Scholar
  17. 17.
    Salavati H, Tangestaninejad S, Moghadam M, Mirkhani V (2011) Zirconia-supported Keggin phosphomolybdovanadate nanocomposite: a heterogeneous and reusable catalyst for alkene epoxidation under thermal and ultrasonic irradiation conditions. C R Chim 14:588–596CrossRefGoogle Scholar
  18. 18.
    Ballivet-Tkatchenko D, dos Santos JHZ, Philippot K (2011) Carbon dioxide conversion to dimethyl carbonate: the effect of silica as support for SnO2 and ZrO2 catalysts. C R Chim 14:780–785CrossRefGoogle Scholar
  19. 19.
    Abdollahi-Alibeik M, Mohammadpoor-Baltork I, Zaghaghi Z (2008) Efficient synthesis of 1,5-benzodiazepines catalyzed by silica supported 12-tungstophosphoric acid. Catal Commun 9:2496–2502CrossRefGoogle Scholar
  20. 20.
    Abdollahi-Alibeik M, Pouriayevali M (2012) Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal Commun 22:13–18CrossRefGoogle Scholar
  21. 21.
    Mohammadpoor-Baltork I, Abdollahi-Alibeik M (2005) Mild, efficient, and chemoselective dehydrogenation of 2-imidazolines, bis-imidazolines, and N-substituted-2-imidazolines with potassium permanganate supported on montmorillonite K-10. Can J Chem 83:110–114CrossRefGoogle Scholar
  22. 22.
    Abdollahi-Alibeik M, Heidari-Torkabad E (2012) H3PW12O40/MCM-41 nanoparticles as efficient and reusable solid acid catalyst for the synthesis of quinoxalines. C R Chim 15:517–523CrossRefGoogle Scholar
  23. 23.
    Mishra HK, Parida KM (1999) Effect of perchlorate ion on the textural and catalytic activity of zirconia. Appl Catal A Gen 184:219–229CrossRefGoogle Scholar
  24. 24.
    Chen J, Wu D, He F, Liu M, Wu H, Ding J, Su W (2008) Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron Lett 49:3814–3818CrossRefGoogle Scholar
  25. 25.
    Niknam K, Jafarpour N, Niknam E (2011) Silica-bonded N-propylsulfamic acid as a recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Chin Chem Lett 22:69–72CrossRefGoogle Scholar
  26. 26.
    Davoodnia A, Allameh S, Fakhari AR (2010) Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin Chem Lett 21:550–553CrossRefGoogle Scholar
  27. 27.
    Rostami A, Tavakoli A (2011) Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett 22:1317–1320CrossRefGoogle Scholar
  28. 28.
    Zong YX, Zhao Y, Luo WC (2010) Highly efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropoly acids in water. Chin Chem Lett 21:778–781CrossRefGoogle Scholar
  29. 29.
    Majid G, Kobra A (2011) Eco-friendly and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Chin J Chem 29:1617– 1623CrossRefGoogle Scholar
  30. 30.
    Subba Reddy BV, Venkateswarlu A (2011) Cellulose-SO3H: an efficient and biodegradable solid acid for the synthesis of quinazolin-4(1H)-ones. Tetrahedron Lett 52:1891–1894CrossRefGoogle Scholar
  31. 31.
    Dabiri M, Mohammadi AA (2009) An efficient and convenient protocol for the synthesis of novel 1′H-spiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione derivatives. Monatsh Chem 140:401–404CrossRefGoogle Scholar
  32. 32.
    Wang B, Li Z, Wang XN (2011) A new approach to the facile synthesis of 2-substituted-quinazolin-4(3H)-ones. Chin Chem Lett 22:951–953CrossRefGoogle Scholar
  33. 33.
    Su W, Yang B (2002) Reductive cyclization of nitro and azide compounds with aldehydes and ketones promoted by metallic samarium and catalytic amount of iodine. AustJ Chem 55:695–697CrossRefGoogle Scholar
  34. 34.
    Shi D, Rong L (2003) Synthesis of quinazolin-4(3H)-ones and 1,2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent. Tetrahedron Lett 44:3199–3201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zeinab Hamidi
    • 1
    Email author
  • Mohammad Abdollahi-Alibeik
    • 1
  • Seyed Yousef Mosavian
    • 2
  1. 1.Department of ChemistryYazd UniversityYazdIran
  2. 2.Materials Engineering Department, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations