Advertisement

Silicon

pp 1–7 | Cite as

1.38kV Merged Pin Schottky Rectifier for High Power Device Applications

  • Muhammad FayyazEmail author
  • Fayyaz A. Chaudhry
Original Paper
  • 20 Downloads

Abstract

In this paper, we have proposed a modified version of junction barrier schottky diode (JBS) with fused trench structure to enhance electrical properties. The device has an increased current density, low forward voltage drop, high breakdown voltage and large schottky contact area as compared to previous merged pin-junction barrier schottky diode.4H-SiC is used as a substrate and device is purely simulation based. To carry out simulation work Silvaco TCAD(ATLAS) is used. The simulated device has current density of 110 A/cm2 with schottky region having height of 2.5 μm and at a forward voltage drop of 2.5 V. The proposed device has more number of schottky contacts than the previous devices and it reduces the forward voltage drop by 20% at current density of 140 A/cm2. The output capacitance of this device, common JBS and earlier merged pin schottky diode are almost same. Moreover, the forward and reverse features of device are studied at room temperature (25 °C) as well as at higher temperatures.

Keywords

Common junction barrier schottky diode Current density Forward voltage drop Merged pin junction barrier schottky diode Silicon carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Millman J (1958) Vacuum-tube and semiconductor electronics. 1st ed. Electr Electron Eng Ser. New York: McGraw-Hill 657Google Scholar
  2. 2.
    Streetman BG, Banerjee SK (2015) Solid State Electronic Devices: Global Edition. 7th ed. Harlow, United Kingdom: Pearson Education Limited 632Google Scholar
  3. 3.
    Chow T, Tyagi R (1993) Wide bandgap compound semiconductors for superior high-voltage power devices. In Power Semiconductor Devices and ICs, 1993. ISPSD'93. Proceedings of the 5th International Symposium on, pp 84–88Google Scholar
  4. 4.
    Mehmood H, Nasser H, Tauqeer T, Hussain S, Ozkol E, Turan R (2018) Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int J Energy Res 42:1563–1579CrossRefGoogle Scholar
  5. 5.
    Singh R, Capell DC, Hefner AR, Lai J, Palmour JW (2002) High-power 4H-SiC JBS rectifiers. IEEE Trans Electron Devices 49:2054–2063CrossRefGoogle Scholar
  6. 6.
    Harris GL, INSPEC (1995) Properties of silicon carbide. INSPEC, Institution of Electrical EngineersGoogle Scholar
  7. 7.
    Roschke M, Schwierz F (2001) Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans Electron Devices 48:1442–1447CrossRefGoogle Scholar
  8. 8.
    Weitzel CE, Palmour JW, Carter CH, Moore K, Nordquist K, Allen S et al (1996) Silicon carbide high-power devices. IEEE Trans Electron Devices 43:1732–1741CrossRefGoogle Scholar
  9. 9.
    Dahlquist F (2002) Junction barrier Schottky rectifiers in silicon carbide. Mikroelektronik och informationsteknikGoogle Scholar
  10. 10.
    Kordina O, Bergman J, Henry A, Janzen E, Savage S, Andre J et al (1995) A 4.5 kV 6H silicon carbide rectifier. Appl Phys Lett 67:1561–1563CrossRefGoogle Scholar
  11. 11.
    Bhatnagar M, McLarty PK, Baliga B (1992) Silicon-carbide high-voltage (400 V) Schottky barrier diodes. IEEE Electron Device Lett 13:501–503CrossRefGoogle Scholar
  12. 12.
    Mehrotra M, Baliga BJ (1994) Low forward drop JBS rectifiers fabricated using submicron technology. IEEE Trans Electron Devices 41:1655–1660CrossRefGoogle Scholar
  13. 13.
    Brosselard, P & Chevalier, Florian & Proux, Benjamin & Thierry-Jebali, Nicolas & Bevilacqua, Pascal & Tournier, Dominique & Planson, Dominique & Grosset, Gregory & Dupuy, Lionel (2015). Impact of Design on Electrical Characteristics of 3.5 kV 4H-SiC JBS Diode. Mater Sci Forum 806:117–120.  https://doi.org/10.4028/www.scientific.net/MSF.806.117
  14. 14.
    Baliga BJ (1987) Analysis of a high-voltage merged pin/Schottky (MPS) rectifier. IEEE Electron Device Lett 8:407–409CrossRefGoogle Scholar
  15. 15.
    Schoen KJ, Henning JP, Woodall JM, Cooper JA, Melloch M (1998) A dual-metal-trench Schottky pinch-rectifier in 4H-SiC. IEEE Electron Device Lett 19:97–99CrossRefGoogle Scholar
  16. 16.
    Li-kun X, Ying W, Zheng D, Wei X (2014) 1.4 kV junction barrier Schottky rectifier with mixed trench structure. IET Power Electron 7:2594–2599CrossRefGoogle Scholar
  17. 17.
    Qingchun Zhang C, Sei-Hyung Ryu C (2014) Junction barrier Schottky diodes with current surge capability. U.S. Patent and Z.e. al., Editors. Cree, Inc., Durham, NC (US): USA p. 21.Google Scholar
  18. 18.
    Chang H-R, Baliga BJ, Tong DW (1991) Power rectifier with trenches. U.S. Patent 4,982,260Google Scholar
  19. 19.
    Shang-hui LT, Baliga BJ (1993) Schottky barrier rectifier including Schottky barrier regions of differing barrier heights. U.S. Patent 5,262,668Google Scholar
  20. 20.
    Lee S-K, Zetterling C-M, Östling M (2001) Schottky barrier height dependence on the metal work function for p-type 4H-silicon carbide. J Electron Mater 30:242–246CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Engineering and TechnologyTaxilaPakistan
  2. 2.Comsats Institute of Information TechnologyWah CanttPakistan

Personalised recommendations