Advertisement

Silicon

pp 1–11 | Cite as

The Effects of Thermal Neutron Irradiation on Current-Voltage and Capacitance-Voltage Characteristics of Au/n-Si/Ag Schottky Barrier Diodes

  • Durmuş Ali AldemirEmail author
  • Rukiye Aldemir
  • Ali Kökce
  • Songül Duman
  • Ahmet Faruk Özdemir
Original Paper

Abstract

To observe the neutron transmutation and displacement damage effects, Au/n-Si/Ag Schottky barrier diodes were exposed to thermal neutron irradiation. Irradiation induced changes in Schottky barrier height, saturation current, and donor concentration were investigated by using current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the diodes. The irradiation for 10 s caused a little change in the Schottky diode parameters which were obtained from I-V and C-V measurements. Observable changes in the parameters occurred after the second irradiation of 30 s duration. After the total dose, an increase in saturation current and barrier height inhomogeneties took into place and a decrease in carrier concentration was observed due to the carrier removal effect of thermal neutron-induced damages. Whereas the values of zero bias barrier height have little change after irradiations, the values of ideality factor increased after irradiations. The values of zero-bias barrier height for all diodes was also calculated from reverse bias current characteristics. After second dose, the values of zero-bias barrier height decreased for all diodes. The values of series resistance were determined by Cheung functions before and after irradiations. Before irradiations, the values were found between 2.10 kΩ and 2.76 kΩ. After second dose, the values of series resistance of all diodes decreased and were found between 1.59 kΩ and 2.20 kΩ. Furthermore, the proof of thermal neutron transmutation of elements in the devices was given via energy dispersive spectroscopy (EDS) mapping.

Keywords

Silicon Electrical characterization Schottky diode Semiconductor device radiation effects Thermal neutron irradiation EDS mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge Istanbul Technical University Triga Mark II research reactor (ITU-TRR) team for realizing the thermal neutron irradiation of the diodes.

References

  1. 1.
    Duzellier S (2005) Radiation effects on electronic devices in space. Aerosp Sci Technol 9:93–99.  https://doi.org/10.1016/j.ast.2004.08.006 CrossRefGoogle Scholar
  2. 2.
    Dharmarasu N, Arulkumaran S, Sumathi RR, Jayavel P, Kumar J, Magudapathy P, Nair KGM (1998) Low energy proton irradiation induced interface defects on Pd/n- GaAs Schottky diodes and its characteristics. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 140:119–123.  https://doi.org/10.1016/S0168-583X(98)00003-2 CrossRefGoogle Scholar
  3. 3.
    Kaschieva S, Rebohle L, Skorupa W (2003) Defect formation in oxygen- and boron- implanted MOS structures after. Appl Phys A Mater Sci Process 76:823–826.  https://doi.org/10.1007/s00339-002-1963-x CrossRefGoogle Scholar
  4. 4.
    Sumathi RR, Udhayasankar M, Kumar J, Magudapathy P, Nair KGM (2001) Effect of proton irradiation on the characteristics of GaAs Schottky barrier diodes. Phys B Condens Matter 308–310:1209–1212.  https://doi.org/10.1016/S0921-4526(01)00944-9 CrossRefGoogle Scholar
  5. 5.
    Kumar S, Katharria YS, Batra Y, Kanjilal D (2007) Influence of swift heavy ion irradiation on electrical characteristics of au/ n -Si (1 0 0) Schottky barrier structure. J Phys D Appl Phys 40:6892–6897.  https://doi.org/10.1088/0022-3727/40/22/006 CrossRefGoogle Scholar
  6. 6.
    Sciortino S, Hartjes F, Lagomarsino S, Nava F, Brianzi M, Cindro V, Lanzieri C, Moll M, Vanni P (2005) Effect of heavy proton and neutron irradiations on epitaxial 4H-SiC Schottky diodes. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 552:138–145.  https://doi.org/10.1016/j.nima.2005.06.017 CrossRefGoogle Scholar
  7. 7.
    Abdul Amir HF, Chik A (2009) Neutron radiation effects on metal oxide semiconductor (MOS) devices. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 267:3032–3036.  https://doi.org/10.1016/j.nimb.2009.06.051 CrossRefGoogle Scholar
  8. 8.
    Hoffmann HJ (1981) Neutron transmutation doping of silicon and other semiconducting materials. J Appl Phys 52:4070–4074.  https://doi.org/10.1063/1.329255 CrossRefGoogle Scholar
  9. 9.
    Haller EE (1995) Isotopically engineered semiconductors. J Appl Phys 77:2857–2878.  https://doi.org/10.1063/1.358700 CrossRefGoogle Scholar
  10. 10.
    Morvic M, Boh P, Huran J, Sek M (2002) Electrical properties of semi-insulating GaAs irradiated with neutrons a. Nucl Instruments Methods Phys Res B 197:240–246CrossRefGoogle Scholar
  11. 11.
    Sze SM, Kwok KN (2006) Physics of semiconductor devices3nd edn. John Wiley & Sons, New JerseyCrossRefGoogle Scholar
  12. 12.
    Anderson WA, Kim JK, Delahoy AE (1977) Barrier height modification in silicon Schottky (MIS) solar cells. IEEE Trans Electron Devices 24:453–457.  https://doi.org/10.1109/T-ED.1977.18757 CrossRefGoogle Scholar
  13. 13.
    Lo Giudice A, Fasolo F, Durisi E, Manfredotti C, Vittone E, Fizzotti F, Zanini A, Rosi G (2007) Performances of 4H-SiC Schottky diodes as neutron detectors. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 583:177–180.  https://doi.org/10.1016/j.nima.2007.08.241 CrossRefGoogle Scholar
  14. 14.
    Ejderha K, Karabulut A, Turkan N, Turut A (2017) The characteristic parameters of Ni/n-6H-SiC devices over a wide measurement temperature range. Silicon 9:395–401.  https://doi.org/10.1007/s12633-016-9426-8 CrossRefGoogle Scholar
  15. 15.
    Yu AYC, Snow EH (1969) Radiation effects on silicon Schottky barriers. IEEE Trans Nucl Sci 16:220–226.  https://doi.org/10.1109/TNS.1969.4325530 CrossRefGoogle Scholar
  16. 16.
    Borrego JM, Gutmann RJ (1976) Changes in au-GaAs Schottky barrier diodes with low neutron fluence. Appl Phys Lett 28:280–282.  https://doi.org/10.1063/1.88735 CrossRefGoogle Scholar
  17. 17.
    Novoselnik B, Pilipovic M, Jacimovic R, Pivac B, Slunjski R, Capan I (2010) Capacitance changes in neutron irradiated n-type silicon: the flux effect. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268:2400–2402.  https://doi.org/10.1016/j.nimb.2010.04.017 CrossRefGoogle Scholar
  18. 18.
    Hazdra P, Záhlava V, Vobecký J (2014) Point defects in 4H–SiC epilayers introduced by neutron irradiation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 327:124–127.  https://doi.org/10.1016/j.nimb.2013.09.051 CrossRefGoogle Scholar
  19. 19.
    Cindro V, Kolar J, Kramberger G, Mikuž M, Zavrtanik M (2002) Bistable damage in neutron-irradiated silicon diodes. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 476:565–568.  https://doi.org/10.1016/S0168-9002(01)01643-6 CrossRefGoogle Scholar
  20. 20.
    Frontasyeva MV, Steinnes E (2004) Marine gradients of halogens in moss studies by epithermal neutron activation analysis. J Radioanal Nucl Chem 261:101–106.  https://doi.org/10.1023/B:JRNC.0000030941.78117.77 CrossRefGoogle Scholar
  21. 21.
    Omar NIC, Hasbullah NF, Md Rashid NKA, Abdullah J (2012) Electrical properties of neutron-irradiated silicon and GaAs commercial diodes. In: 2012 IEEE symposium on industrial electronics and applications. IEEE, pp 90–94Google Scholar
  22. 22.
    Huseynov E, Garibli A (2016) Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles 62:299–303Google Scholar
  23. 23.
    Ouellet C, Singh B (2013) Nuclear data sheets for a=31. Nucl Data Sheets 114:209–396.  https://doi.org/10.1016/j.nds.2013.03.001 CrossRefGoogle Scholar
  24. 24.
    Tilley DR, Weller HR, Cheves CM, Chasteler RM (1995) Energy levels of light nuclei a = 18–19. Nucl Phys A 595:1–170.  https://doi.org/10.1016/0375-9474(95)00338-1 CrossRefGoogle Scholar
  25. 25.
    Huang X, Kang M (2016) Nuclear data sheets for a = 198. Nucl Data Sheets 133:221–416.  https://doi.org/10.1016/j.nds.2016.02.002 CrossRefGoogle Scholar
  26. 26.
    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts. Clarendon Press OxfordGoogle Scholar
  27. 27.
    Sharma BL (1984) Metal-semiconductor Schottky barrier junctions and their applications. Plenum Press, New YorkCrossRefGoogle Scholar
  28. 28.
    Altındal Ş, Dökme İ, Bülbül MM, Yalçın N, Serin T (2006) The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectron Eng 83:499–505.  https://doi.org/10.1016/j.mee.2005.11.014 CrossRefGoogle Scholar
  29. 29.
    Schmitsdorf RF (1997) Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J Vac Sci Technol B Microelectron Nanom Struct 15:1221.  https://doi.org/10.1116/1.589442 CrossRefGoogle Scholar
  30. 30.
    Durmuş H, Kılıç HŞ, Gezgin SY, Karataş Ş (2018) Analysis of current-voltage-temperature and capacitance-voltage-temperature characteristics of re/n-Si Schottky contacts. Silicon 10:361–369.  https://doi.org/10.1007/s12633-016-9456-2 CrossRefGoogle Scholar
  31. 31.
    Knoll GF (2000) Radiation detection and measurement3rd edn. John Wiley and Sons Inc., USAGoogle Scholar
  32. 32.
    Borrego JM, Gutmann RJ, Ashok S (1976) Neutron radiation effects in gold and aluminum GaAs Schottky diodes. IEEE Trans Nucl Sci 23:1671–1678.  https://doi.org/10.1109/TNS.1976.4328560 CrossRefGoogle Scholar
  33. 33.
    Arulkumaran S, Arokiaraj J, Dharmarasu N, Kumar J (1996) On the enhancement of effective barrier height in Ti/n-GaAs Schottky barrier diodes. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 119:519–522.  https://doi.org/10.1016/S0168-583X(96)00465-X CrossRefGoogle Scholar
  34. 34.
    Rakhshani AE, Makdisi Y, Mathew X, Mathews NR (1998) Charge transport mechanisms in au–CdTe space-charge-limited Schottky diodes. Phys Status Solidi 168:177–187.  https://doi.org/10.1002/(SICI)1521-396X(199807)168:1<177::AID-PSSA177>3.0.CO;2-9 CrossRefGoogle Scholar
  35. 35.
    Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87.  https://doi.org/10.1063/1.97359 CrossRefGoogle Scholar
  36. 36.
    Pillai VRV, Khamari SK, Dixit VK, Ganguli T, Kher S, Oak SM (2012) Effect of γ-ray irradiation on breakdown voltage, ideality factor, dark current and series resistance of GaAs p–i–n diode. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 685:41–45.  https://doi.org/10.1016/j.nima.2012.05.062 CrossRefGoogle Scholar
  37. 37.
    Karmarkar AP, Jun B, Fleetwood DM et al (2004) Proton irradiation effects on GaN-based high electron-mobility transistors with Si-doped AlxGa1-xN and thick GaN cap layers. IEEE Trans Nucl Sci 51:3801–3806.  https://doi.org/10.1109/TNS.2004.839199 CrossRefGoogle Scholar
  38. 38.
    Zeyrek S, Turan A, Bülbül MM (2013) The C - V and G/ω - V electrical characteristics of60Co γ-ray irradiated Al/Si3N4/p-Si (MIS) structures. Chinese Phys Lett 30.  https://doi.org/10.1088/0256-307X/30/7/077306
  39. 39.
    Kumar S, Vinay Kumar M, Pattabi M, Asokan K, Xavier, Nini, Martin, Chandrashekar BN, Chun C, Krishnaveni S (2018) Effect of gamma irradiation on electrical properties of CdTe/CdS solar cells. Mater Today Proc 5:22570–22575.  https://doi.org/10.1016/j.matpr.2018.06.630 CrossRefGoogle Scholar
  40. 40.
    Alialy S, Tecimer H, Uslu H, Altındal Ş (2013) A comparative study on electrical characteristics of au/N-Si Schottky diodes, with and without bi-doped PVA interfacial layer in dark and under illumination at room temperature. J Nanomed Nanotechnol 4:1000167(7 p) .  https://doi.org/10.4172/2157-7439.1000167
  41. 41.
    Neamen DA (2011) Semiconductor physics and devices: basic principles4th edn. McGraw-HillGoogle Scholar
  42. 42.
    Haas EW, Schnoller MS (1976) Phosphorus doping of silicon by means of neutron irradiation. IEEE Trans Electron Devices 23:803–805.  https://doi.org/10.1109/T-ED.1976.18488 CrossRefGoogle Scholar
  43. 43.
    IAEA (2012) Neutron transmutation doping of silicon at research reactors, IAEA-TECDO-1681, ViennaGoogle Scholar
  44. 44.
    Mousty F, Ostoja P, Passari L (1974) Relationship between resistivity and phosphorus concentration in silicon. J Appl Phys 45:4576–4580.  https://doi.org/10.1063/1.1663091 CrossRefGoogle Scholar
  45. 45.
    Boiko VM, Bublik VT, Voronova MI, Kolin NG, Merkurisov DI, Shcherbachev KD (2006) Structure of InP single crystals irradiated with reactor neutrons. Phys B Condens Matter 373:82–89.  https://doi.org/10.1016/j.physb.2005.10.137 CrossRefGoogle Scholar
  46. 46.
    Lin Z, Yimen Z, Yuming Z, Chao H (2010) Neutron radiation effect on 4H-SiC MESFETs and SBDs. J Semicond 31:114006.  https://doi.org/10.1088/1674-4926/31/11/114006 CrossRefGoogle Scholar
  47. 47.
    Hudait MK, Krupanidhi SB (2001) Doping dependence of the barrier height and ideality factor of au/n-GaAs Schottky diodes at low temperatures. Phys B Condens Matter 307:125–137.  https://doi.org/10.1016/S0921-4526(01)00631-7 CrossRefGoogle Scholar
  48. 48.
    Mårtensson P, Cricenti A, Hansson GV (1986) Photoemission study of the surface states that pin the Fermi level at Si(100)2 × 1 surfaces. Phys Rev B 33:8855–8858.  https://doi.org/10.1103/PhysRevB.33.8855 CrossRefGoogle Scholar
  49. 49.
    Chin WL, Newbury VM (1992) Determination of barrier height and doping density of a Schottky diode from infrared photoresponse measurements. Aust J Phys 45:781.  https://doi.org/10.1071/PH920781 CrossRefGoogle Scholar
  50. 50.
    Karataş Ş, Türüt A (2006) Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60Co γ-ray source. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 566:584–589.  https://doi.org/10.1016/j.nima.2006.07.054 CrossRefGoogle Scholar
  51. 51.
    Eftekhari G (1993) Electrical characteristics of selenium-treated GaAs MIS Schottky diodes. Semicond Sci Technol 8:409–411.  https://doi.org/10.1088/0268-1242/8/3/018 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of PhysicsErzurum Technical UniversityErzurumTurkey

Personalised recommendations