Advertisement

Silicon

pp 1–14 | Cite as

Constitutive Equation and Processing Maps of Al-7Si-0.3 Mg Hybrid Composites: a Novel Approach to Reduce Cost of Material by Using Agro-Industrial Wastes

  • B. VinodEmail author
  • S. Ramanathan
  • M. Anandajothi
Original Paper
  • 5 Downloads

Abstract

The waste materials are not only found abundantly but also a threat to the environment. However, it can be used as a good additive for composite materials which turns industrial-waste into industrial-wealth. The hypothesis of present study is the utilization of the waste materials not only reduces the production cost but also beneficial for the environment. Aluminium with waste particles (agro and industrial) is prepared by using double stir-casting process. The hot deformation behaviour of aluminium alloy and aluminium hybrid composites was studied over deformation temperature range of 300–500 °C and strain rate of 0.1–10 s−1. The processing maps were developed for addition of different weight fractions (0, 7.5, 10 and 12.5%) of waste particles with A356 alloy to identify the safe and unsafe domains during hot processing. The A356/10%RHA-10%Fly ash hybrid composite achieved higher efficiency and high activation energy compare to base alloy and other hybrid composites.

Keywords

Agro-industrial waste Hot deformation behaviour Processing map Microstructure evaluation Environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater res tech 4:434–445CrossRefGoogle Scholar
  2. 2.
    Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR (2013) Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des 49:386–391CrossRefGoogle Scholar
  3. 3.
    Singh J, Chauhan A (2016) Characterization of hybrid aluminum matrix composites for advanced applications-a review. J Mater res tech 5:159–169CrossRefGoogle Scholar
  4. 4.
    Li C, Wang S, Zhang D, Liu S, Shan Z, Zhang X (2016) Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy. J Alloys Compd 688:456–462CrossRefGoogle Scholar
  5. 5.
    Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Int Mater Rev 43:243–258CrossRefGoogle Scholar
  6. 6.
    Li PW, Li HZ, Huang L, Liang XP, Zhu ZX (2017) Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map. Trans Nonferrous Metals Soc China 27:1677–1688CrossRefGoogle Scholar
  7. 7.
    Ezatpour HR, Sajjadi SA, Sabzevar MH, Chaichi A, Ebrahimi GR (2017) Processing map and microstructure evaluation of AA6061/Al2O3 nanocomposite at different temperatures. Trans Nonferrous Metals Soc China 27:1248–1256CrossRefGoogle Scholar
  8. 8.
    Shalbafi M, Roumina R, Mahmudi R (2017) Hot deformation of the extruded mg-10Li-1Zn alloy: constitutive analysis and processing maps. J Alloys Compd 696:1269–1277CrossRefGoogle Scholar
  9. 9.
    Dwivedi SP, Sharma S, Mishra RK (2014) A356 aluminum alloy and applications-a review. Adv Mat Manu Characterization 4:81–86Google Scholar
  10. 10.
    Vinod B, Ramanathan S, Ananthi V, Selvakumar N (2018) Fabrication and characterization of organic and in-organic reinforced A356 Aluminium matrix hybrid composite by improved double-stir casting. Silicon 1–13Google Scholar
  11. 11.
    Vinod B, Ramanathan S, Anandajothi M (2018) Effect of organic and inorganic reinforcement on Tribological behaviour of Aluminium A356 matrix hybrid composite. J Bio Tri Corr 4:45CrossRefGoogle Scholar
  12. 12.
    Vinod B, Ramanathan S (2018) Effect of Zener-Hollomon parameter on the flow behaviour and microstructure evolution of Al alloy with organic-inorganic hybrid composites. Int J Plast Technol 22:137–160CrossRefGoogle Scholar
  13. 13.
    Qin S, Chen C, Zhang G, Wang W, Wang Z (1999) The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites. Mater Sci Eng A 272:363–370CrossRefGoogle Scholar
  14. 14.
    Prasad YVRK, Rao KP, Sasidhar S (2015) Hot working guide: a compendium of processing maps. ASM internationalGoogle Scholar
  15. 15.
    Li YS, Zhang Y, Tao NR, Lu K (2009) Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of cu subjected to plastic deformation. Acta Mater 57:761–772CrossRefGoogle Scholar
  16. 16.
    Zhang BL, Maclean MS, Baker TN (2000) Hot deformation behaviour of aluminium alloy 6061/SiCp MMCs made by powder metallurgy route. Mater Sci Technol 16:897–902CrossRefGoogle Scholar
  17. 17.
    Jin N, Zhang H, Han Y, Wu W, Chen J (2009) Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater Charact 60:530–536CrossRefGoogle Scholar
  18. 18.
    McQueen HJ (2004) Development of dynamic recrystallization theory. Mater Sci Eng A 387:203–208CrossRefGoogle Scholar
  19. 19.
    McQueen HJ, Evangelista E, Bowles J, Crawford G (1984) Hot deformation and dynamic recrystallization of Al-5Mg-0.8 Mn alloy. Metal Sci 18:395–402CrossRefGoogle Scholar
  20. 20.
    Guo L, Yang S, Yang H, Zhang J (2015) Processing map of as-cast 7075 aluminum alloy for hot working. Chin J Aeronaut 28:1774–1783CrossRefGoogle Scholar
  21. 21.
    Li HZ, Wang HJ, Liang XP, Liu HT, Liu Y, Zhang XM (2011) Hot deformation and processing map of 2519A aluminum alloy. Mater Sci Eng A 528:1548–1552CrossRefGoogle Scholar
  22. 22.
    Li B, Pan Q, Yin Z (2014) Microstructural evolution and constitutive relationship of Al-Zn-mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models. J Alloys Compd 584:406–416CrossRefGoogle Scholar
  23. 23.
    Wang K, Li X, Li Q, Shu G, Tang G (2017) Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature. Mater Sci Eng A 696:248–256CrossRefGoogle Scholar
  24. 24.
    Bhandakkar A, Prasad RC Sastry SM (2014) deformation behaviour of Aluminium alloy AA6061-10% Fly ash composites for aerospace application. Advanc. Comp aerospace, marine. Land Appli Springer, Cham, pp 3–21Google Scholar
  25. 25.
    Spigarelli S, Cerri E, Cavaliere P, Evangelista E (2002) An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria. Mater Sci Eng A 327:144–154CrossRefGoogle Scholar
  26. 26.
    Liu Y, Geng C, Lin Q, Xiao Y, Xu J, Kang W (2017) Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map. J Alloys Compd 713:212–221CrossRefGoogle Scholar
  27. 27.
    Tabei A, Shih DS, Garmestani H, Liang SY (2016) Dynamic recrystallization of Al alloy 7075 in turning. J Manuf Sci Eng 138:071010CrossRefGoogle Scholar
  28. 28.
    Liu W, Zhao H, Li D, Zhang Z, Huang G, Liu Q (2014) Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature. Mater Sci Eng A 596:176–182CrossRefGoogle Scholar
  29. 29.
    Li DH, Yang Y, Xu T, Zheng HG, Zhu QS, Zhang QM (2010) Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy. Mater Sci Eng A 527:3529–3535CrossRefGoogle Scholar
  30. 30.
    Wu MS, He MD (1998) Interaction of wedge crack and grain boundary dislocations. Int J Solids Struct 35:4337–4350CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Manufacturing EngineeringAnnamalai UniversityChidambaramIndia
  2. 2.Department of Mechanical EngineeringSNS College of engineeringCoimbatoreIndia

Personalised recommendations