Advertisement

Silicon

pp 1–8 | Cite as

Electrical and Dielectric Characterizations of Cu2ZnSnSe4/n-Si Heterojunction

  • A. Ashery
  • I. M. El RadafEmail author
  • Mohamed M. M. Elnasharty
Original Paper
  • 28 Downloads

Abstract

Cu2ZnSnSe4 (CZTSe) thin film has been synthesized onto silicon substrates by liquid phase epitaxial growth for the first time in which Au/CZTSe/n-Si/Al heterojunction was successfully fabricated by this technique. The crystal structure and morphology of the CZTSe film were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The I-V characteristics of the CZTSe/n-Si heterojunction in the dark have been studied at different temperatures ranged from 298 to 398 K to determine the diode parameters such as the rectification ratio, series and shunt resistances (RR, Rs and Rsh resp.), the effective barrier height (ϕb) and the diode ideality factor (n). The CZTSe/n-Si heterojunction shows an excellent rectification behavior. The ideality factor n, series resistance RS, and shunt resistance RSh, were decreased with increasing the temperature. The photovoltaic constants such as VOC, JSC, fill factor and the efficiency of CZTSe/n-Si heterojunction have been calculated from the I-V characteristics under illumination. The CZTSe/n-Si heterojunction exhibits efficiency about 3.42% at room temperature. The dielectric measurements proved that the CZTSe/n-Si heterojunction device shows the behavior of two forward biased Schottky diodes.

Keywords

Cu2ZnSnSe4 Liquid phase epitaxial growth Diode ideality factor Series resistance Dielectric characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walsh A, Chen S, Wei S-H, Gong X-G (2012) Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater 2:400–409CrossRefGoogle Scholar
  2. 2.
    Siebentritt S, Schorr S (2012) Kesterites a challenging material for solar cells. Prog Photovolt Res Appl 20:512–519CrossRefGoogle Scholar
  3. 3.
    Nakashima M, Yamaguchi T, Yukawa S, Sasano J, Izaki M (2016) Effect of annealing on the morphology and compositions of Cu2ZnSnSe4 thin films fabricated by thermal evaporation for solar cells. Thin Solid Films 621:47–51CrossRefGoogle Scholar
  4. 4.
    Woo K, Kim K, Zhong Z, Kim I, Oh Y, Jeong S, Moon J (2014) Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment. Sol Energy Mater Sol Cells 128:362–368CrossRefGoogle Scholar
  5. 5.
    Chen G, Yuan C, Liu J, Deng Y, Jiang G, Liu W, Zhu C (2014) Low-cost preparation of Cu2ZnSnS4 and Cu2ZnSn(SxSe1−x)4 from binary sulfide nanoparticles for solar cell application. J Power Sources 262:201–206CrossRefGoogle Scholar
  6. 6.
    Pani B, Padhy S, Singh UP (2017) A comparative study of kesterite thin films prepared from different ball milled precursors. Materials Today: Proceedings 4:12536–12544CrossRefGoogle Scholar
  7. 7.
    Shyju TS, Anandhi S, Suriakarthick R, Gopalakrishnan R, Kuppusami P (2015) Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J Solid State Chem 227:165–177CrossRefGoogle Scholar
  8. 8.
    Lee SM, Cho YS (2013) Characteristics of Cu2ZnSnSe4 and Cu2ZnSn(Se, S)4 absorber thin films prepared by post selenization and sequential sulfurization of co-evaporated Cu–Zn–Sn precursors. J Alloys Compd 579:279–283CrossRefGoogle Scholar
  9. 9.
    Salome PMP, Malaquias J, Fernandes PA, Ferreira MS, da Cunha AF, Leitao JP, Gonzalez JC, Matinaga FM (2012) Growth and characterization of Cu2ZnSn(S, Se)4 thin films for solar cells. Sol Energy Mater Sol Cells 101:147–153CrossRefGoogle Scholar
  10. 10.
    Lee YS, Gershon T, Gunawan O, Todorov TK, Gokmen T, Virgus Y, Guha S (2015) Cu2ZnSnSe4 thin film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv Energy Mater 7(1401372):1–4Google Scholar
  11. 11.
    Guo L, Zhu Y, Gunawan O, Gokmen T, Deline VR, Ahmed S, Romankiw LT, Deligianni H (2014) Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency. Prog Photovolt 22:58–68CrossRefGoogle Scholar
  12. 12.
    Volobujeva O, Bereznev S, Raudoja J, Otto K, Pilvet M, Mellikov E (2013) Synthesis and characterization of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route. Thin Solid Films 535:48–51CrossRefGoogle Scholar
  13. 13.
    Ganchev M, Iljina J, Kaupmees L, Raadik T, Volobujeva O, Mere A, Altosaar M, Raudoja J, Mellikov E (2011) Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy. Thin Solid Films 519:7394–7398CrossRefGoogle Scholar
  14. 14.
    Yakushev MV, Sulimov MA, Márquez Prieto J, Forbes I, Krustok J, Edwards PR, Zhivulko VD, Borodavchenko OM, Mudryi AV, Martin RW (2017) Influence of the copper content on the optical properties of CZTSe thin films. Sol Energy Mater Sol Cells 168:69–77CrossRefGoogle Scholar
  15. 15.
    Kim S-Y, Kim J (2013) Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell. Thin Solid Films 547:178–180CrossRefGoogle Scholar
  16. 16.
    Abd El-Rahman KF, Darwish AAA, El-Shazly EAA (2014) Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater Sci Semicond Process 25:123–129CrossRefGoogle Scholar
  17. 17.
    El Radaf IM, Hamid TA, Yahia IS (2018) Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Journal of Material Research Express 5:066416CrossRefGoogle Scholar
  18. 18.
    Rao GK (2017) Electrical and photoresponse properties of vacuum deposited Si/Al:ZnSe and Bi:ZnTe/Al:ZnSe photodiodes. Appl Phys A Mater Sci Process 224:1–9Google Scholar
  19. 19.
    Yahia IS, Farag AAM, Yakuphanoglu F, Farooq WA (2011) Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synth Met 161:881–887CrossRefGoogle Scholar
  20. 20.
    Taşçıoğlu İ, Tan SO, Yakuphanoğlu F, Altındal Ş (2018) Effectuality of barrier height inhomogeneity on the current–voltage–temperature characteristics of metal semiconductor structures with CdZnO interlayer. J Electron Mater 47(10):6059–6066CrossRefGoogle Scholar
  21. 21.
    Abd El-Rahman KF, Darwish AAA (2011) Fabrication and electrical characterization of p-Sb2S3/n-Si heterojunctions for solar cells application. Curr Appl Phys 11:1265–1268CrossRefGoogle Scholar
  22. 22.
    Sakr G (2013) Characterization of Al/p-Si/n-AgGaSe2/Au thin films heterojunction device. Mater Chem Phys 138:951–955CrossRefGoogle Scholar
  23. 23.
    Ganesh V, Manthrammel MA, Shkir M, Yahia IS, Zahran HY, Yakuphanoglu F, AlFaify S (2018) Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic application. Applied Physics A 124:424CrossRefGoogle Scholar
  24. 24.
    Mansour AM, Yahia IS, El Radaf IM (2018) Structural, electrical and photovoltaic properties of PbSb2S5/n-Si heterojunction synthesized by vacuum coating technique. Journal of Material Research Express 5:076406CrossRefGoogle Scholar
  25. 25.
    Parameshwari PM, Shrisha BV, Satyanarayana Bhat P, Gopalakrishna Naika K (2016) Electrical behavior of CdS/Al Schottky barrier diode at low temperatures. Materials Today: Proceedings 3:1620–1626CrossRefGoogle Scholar
  26. 26.
    El Radaf IM, Nasr M, Mansour AM (2018) Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express 5:015904CrossRefGoogle Scholar
  27. 27.
    Farag AAM, Yahia IS, Fadel M (2009) Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode. Int J Hydrog Energy 34:4906–4913CrossRefGoogle Scholar
  28. 28.
    Nasr M, El Radaf IM, Mansour AM (2018) Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids 115:283–288CrossRefGoogle Scholar
  29. 29.
    Hameed TA, El Radaf IM, Elsayed-Ali HE (2018) Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device. J Mater Sci Mater Electron 29:12584–12594CrossRefGoogle Scholar
  30. 30.
    Fouad S, El Radaf IM, Sharma P, El-Bana MS (2018) Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J Alloys Compd 757:124–133CrossRefGoogle Scholar
  31. 31.
    Yucedag I, Kaya A, Altindal S, Uslu I (2014) Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature. Chinese Phys B 23(4: 047304):1–6Google Scholar
  32. 32.
    Mauryaa D, Kumarb J, Shripal (2005) Dielectric spectroscopic and a.c. conductivity studies on layered Na2-XKXTi3O7 (X=0.2, 0.3, 0.4) ceramics. J Phys Chem Solids 66:1614–1620CrossRefGoogle Scholar
  33. 33.
    Cutronia M, Mandanici A, Piccoloa A, Fanggaob C, Saundersb GA, Mustarelli P (1996) Frequency and temperature dependence of a.c. conductivity of vitreous silver phosphate electrolytes. Solid State Ionics 90:167–172CrossRefGoogle Scholar
  34. 34.
    Riad AS, Korayem MT, Abdel-Malik TG (1999) AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate. Physica B 270:140–147CrossRefGoogle Scholar
  35. 35.
    Chattopadhyay P, Raychaudhuri B (1993) Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid State Electron 36:605–610CrossRefGoogle Scholar
  36. 36.
    Schroder DK (2006) Semiconductor material, device characterization. Wiley, Hoboken, NJGoogle Scholar
  37. 37.
    Kadri E, Khlifi M, Krichen M, Khirouni K, Zouari A (2017) Frequency and voltage-dependent electrical and dielectric properties of SiGe thin films for solar cells application deposited on p-type silicon. Opt Quant Electron 49:1–12CrossRefGoogle Scholar
  38. 38.
    Tatar B, Evrim Bulgurcuoglu A, Gokdemir P, Aydogan P, Yılmazer D, Ozdemir O, Kutlu K (2009) Electrical and photovoltaic properties of Cr/Si Schottky diodes. Int J Hydrog Energy 34:5208–5212CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. Ashery
    • 1
  • I. M. El Radaf
    • 2
    Email author
  • Mohamed M. M. Elnasharty
    • 3
  1. 1.Solid State Physics Department, Physics Research Division, National Research CentreGizaEgypt
  2. 2.Electron Microscope and Thin Films Department, Physics Research Division, National Research CentreGizaEgypt
  3. 3.Microwave physics, Dielectric Department , Physics Research Division, National Research CentreGizaEgypt

Personalised recommendations