pp 1–9 | Cite as

Tailoring the Structural and Optical Parameters of Eu3+:CeO2-SiO2 Nanopowder Via Thermal Treatment

  • Neelam Rani
  • Rachna AhlawatEmail author
Original Paper


Nanocrystalline Eu3+:CeO2-SiO2 powder samples were prepared by sol-gel technique. This technique is suitable for large-scale production and it is also a cost effective process. The prepared samples were annealed at different temperatures which were characterized by many complementary techniques. The formation of cubic fluorite structure of CeO2 nanocrystal with a uniform distribution was confirmed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The average nanocrystalline size has been calculated as 3, 7 and 15 nm using Debye-Scherrer formula for different annealed samples. The calculated nanocrystalline sizes were compared with W-H plot and TEM histograms. It was investigated that FWHM of diffraction peaks decreases with increase in temperature results in increase nanocrystalline size. The FTIR spectroscopy provides the valuable information and identification of different chemical group/bonds present in the prepared samples. It is found that if we fixed the dopant concentration, then particle size, morphology and band gap energy of prepared nanopowder can be tailored by applying the annealing conditions. Comparative studies of absorption spectra and corresponding band gap energies have been done and a red shift has been observed in absorption spectra with thermal treatment. The shift of the optical absorption edge of prepared nanopowder towards lower energies increases its utilization in the visible region specially photocatalytic activity.


Nanopowder Structural properties Thermal annealing Absorption spectra Band gap energy etc. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu Y, Chen D, Huang P, Lin H, Yang A, Wang Y (2012). J Alloys Compd 513:626CrossRefGoogle Scholar
  2. 2.
    Ahlawat R, Rani N, Goswami B (2018). J Alloys Compd 743:126CrossRefGoogle Scholar
  3. 3.
    Khachatouriana AM, Golestani-Fardb F, Sarpoolaky H, Vogt C, Toprak MS (2015). Colloids Surf A 41:2006Google Scholar
  4. 4.
    Gangopadhyay S, Frolov DD, Masunov AE, Seal S (2014). J Alloys Compd 584:199CrossRefGoogle Scholar
  5. 5.
    Nadjia L, Abdelkader E, Naceur B, Ahmed B (2018). J Rare Earths 36:575CrossRefGoogle Scholar
  6. 6.
    Munoz JC, Prado FA, Paez JER (2017). Colloids and Surfaces A 529:146CrossRefGoogle Scholar
  7. 7.
    Wang J, Xu W, Chen L, Jia Y, Wang L, Huang XJ, Liu J (2013). Chem Eng J 231:198CrossRefGoogle Scholar
  8. 8.
    Song X, Jiang N, Li Y, Qiu G (2008). Mater Chem Phys 110:128CrossRefGoogle Scholar
  9. 9.
    Sun X, Wen J, Guo Q, Zhenyi FP, Luo CY, Peng G, Wang T (2017). Opt Mater Express 7:751Google Scholar
  10. 10.
    Anitha R, Ramesh KV, Sudheer kumar KH (2017). Int J Pharm Bio Sci 8:933Google Scholar
  11. 11.
    Parvathya S, Venkatramanb BR (2017). J Nanosci Curr Res 2:2Google Scholar
  12. 12.
    Tok AIY, Boey FYC, Dong Z, Sun XL (2007). J Mater Process Technol 190:217CrossRefGoogle Scholar
  13. 13.
    Ahlawat R (2015). Ceram Int 41:7345CrossRefGoogle Scholar
  14. 14.
    Liu J, Zhao Z, Wang J, Xu C, Duan A, Jiang G, Yang Q (2008). Appl Catal B Environ 84:185CrossRefGoogle Scholar
  15. 15.
    Yang K, Li DF, Huang WQ, Liang X, Huang GF, Wen SC (2017). Appl Phys A Mater Sci Process 123:96CrossRefGoogle Scholar
  16. 16.
    Raubach CW, Polastro L, Ferrer MM, Perrin A, Perrin C, Albuquerque AR (2014). J Appl Phys 115:213514CrossRefGoogle Scholar
  17. 17.
    Lara-Lopez Y, García-Rosales G, Jimenez-Becerril J (2017). J Rare Earths 35:551CrossRefGoogle Scholar
  18. 18.
    Vimal G, Mani KP, Biju PR, Joseph C, Unnikrishnan NV, Ittyachen MA (2015). Appl Nanosci 5:837CrossRefGoogle Scholar
  19. 19.
    Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S, Maensiri S (2009). Mater Chem Phys 115:423CrossRefGoogle Scholar
  20. 20.
    Ahlawat R, Aghamkar P (2014). Acta Phys Pol A 126:736CrossRefGoogle Scholar
  21. 21.
    Aghamkar P, Duhan S, Singh M, Kishore N, Sen PK (2008). J Sol-Gel Sci Technol 46:17CrossRefGoogle Scholar
  22. 22.
    Ahlawat R (2015). Mod Phys Lett B 2:1550046Google Scholar
  23. 23.
    Ahlawat R (2015). Int J Appl Ceram Technol 12:1131CrossRefGoogle Scholar
  24. 24.
    Kumara E, Selvarajanb P, Muthurajc D (2013). Mater Res 16:269CrossRefGoogle Scholar
  25. 25.
    Singh LR, Ningthoujam RS (2011). Chem Phys Lett 510:120CrossRefGoogle Scholar
  26. 26.
    Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015). Mater Sci Eng C 49:408CrossRefGoogle Scholar
  27. 27.
    Tao Y, Wang H, Xia Y, Zhang G, Wu H, Tao G (2010). Mater Chem Phys 124:541CrossRefGoogle Scholar
  28. 28.
    Rachna, Aghamkar P (2013). Opt Mater 36:337CrossRefGoogle Scholar
  29. 29.
    Patsalas P, Logothetidis S, Sygellou L, Kennou S (2003). Phys Rev B 68:035104Google Scholar
  30. 30.
    Tatar B, Sam ED, Kutlu K, Urgen M (2008). J Mater Sci 43:510CrossRefGoogle Scholar
  31. 31.
    Choudhury B, Chetri P, Choudhury A (2015). J Exp Nanosci 10:103CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics, Materials Science LaboratoryCh. Devi Lal UniversitySirsaIndia

Personalised recommendations