pp 1–13 | Cite as

Structure, Reactivity, Nonlinear Optical Properties and Vibrational Study of 5-Thioxo-1,4-thiazaolidin-3-one and 5-thioxo-1,4,2-thiazasilolidin-3-one (Silicon vs. Carbon). A DFT Study

  • Abdulhakim A. AhmedEmail author
  • Luis R. Domingo
Original Paper


The structures and nonlinear optical properties (NLO) of 5-thioxo-1,4-thiazaolidin-3-one(Rhodanine) and 5-thioxo-1,4,2-thiazasilolidin-3-one (silarhodanine) tautomers were studied in gas phase and in solutions using the B3LYP density functional theory and composite CBS-QB3 method. The global minimum at the B3LYP/6-31++G(d,p) and CBS-QB3 levels of theory is tautomer 5 in the gas phase and in solvents for rhodanine, and simiarly, tautomer 13 is the global minimum for silarhodanine. The interconversion among the tautomers is proceeded by an intramolecular proton transfer reaction. An identical solvent effects can be noted for rhodanine and silarhodanine tautomers. The activation barrier towards ring-opening processes (12, 910) decreases with the increasing dielectric constant of the solvent; on the other hand, the barrier of the ring-closure processes (23, 1011) increases with the increasing dielectric constant. The tautomers are predicted to show significant NLO properties. Also, a number of correlations between the dipole moment and electron densities in bond critical points of the S3-C4 bond and interaction energy as well as vibrational frequencies at the transition states (TS2–3,TS10–11) were examined under different solvents. Finally, the investigation of the heavy atom substitution effects on the properties of silarhodanine is proven to be very weak under these conditions.


NLO Vibrational assignments Solvent effects Reactivity Ring-opening Rhodanine Silarhodanine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is indebted to Professor J. E. McGrady and his group at theoretical chemistry laboratory, Oxford University for their assistance with the computers facility.

Supplementary material

12633_2018_36_MOESM1_ESM.docx (65 kb)
ESM 1 (DOCX 64 kb)


  1. 1.
    Watson JD, Crick FH (1953). Nature 171:737–738CrossRefGoogle Scholar
  2. 2.
    Gold V (1979) Glossary of terms used in physical organic chemistry 51:1725–1801Google Scholar
  3. 3.
    Raczynska ED, Kosinska W, Osmialowski B, Gawinecki R (2005) Chem Rev 105:3561–3612CrossRefGoogle Scholar
  4. 4.
    Raper ES (1985) Coord Chem Rev 61:115–184CrossRefGoogle Scholar
  5. 5.
    Le Fevre R, Werner R (1957) Aust J Chem 10:26–33CrossRefGoogle Scholar
  6. 6.
    Contello BCC, Eggleston DS, Haigh D, Haltiwanger RC, Heath CM, Hindley RM, Jenning KR, Sime JT, Woroneick SR (1994) J Chem Soc Perkin Trans 3319–3324Google Scholar
  7. 7.
    Villain-Guillot P, Gualtieri M, Bastide L, Roquet F, Martinez J, Amblard M, Pugniere M, Leonetti JP (2007) J Med Chem 50:4195–4204CrossRefGoogle Scholar
  8. 8.
    Yan Y, Larson G, Wu JZ, Appleby T, Ding Y, Hamatake R, Hong Z, Yao N (2007) Bioorg Med Chem Lett 17:63–67CrossRefGoogle Scholar
  9. 9.
    Kletzien RF, Clarke SD (1992) Mol Pharmacol 41:393–398PubMedGoogle Scholar
  10. 10.
    Cutshall NS, O’Day C, Prezhdo M (2005) Bioorg Med Chem Lett 15:3374–3379CrossRefGoogle Scholar
  11. 11.
    Al-Sehemi AG, EL-Gogary TM (2009) J Mol Struct 907:66–73CrossRefGoogle Scholar
  12. 12.
    Tahmassebi D (2003) J Mol Struct 638:11–20CrossRefGoogle Scholar
  13. 13.
    Boyd DB (1997) J Mol Struct 401:227–234CrossRefGoogle Scholar
  14. 14.
    Irvin MW, Patrick LG, Kewney J, Hastings SF, MacKenzie SJ (2008) Bioorg Med Chem Lett 18:2032–2037CrossRefGoogle Scholar
  15. 15.
    Insuasty A, Ortiz A, Tigreros A, Solarte E, Insuasty B (2011) Dyes Pigments 88:385–390CrossRefGoogle Scholar
  16. 16.
    Spassova M, Enchev V (2004) Chem Phys 204:29–36CrossRefGoogle Scholar
  17. 17.
    Fernandes S, Herbivo C, De-Sousa J, Comel A, Belsley M, Raposo M (2018) Dyes Pigments 149:566–573CrossRefGoogle Scholar
  18. 18.
    Wan Z, Jia C, Wang Y, Yao X (2017) Appl Mater Interfaces 9:25225–25231CrossRefGoogle Scholar
  19. 19.
    Ahmed AA (2012) Comput Theor Chem 999:251–258CrossRefGoogle Scholar
  20. 20.
    Ahmed AA (2013) J Mol Struct 1032:5–11CrossRefGoogle Scholar
  21. 21.
    Ng SW (2007) Acta Cryst E63:o1363–o1364Google Scholar
  22. 22.
    Ahmed AA, Hassan NF (2013) J Chem Pharm Res 5(6):209–214Google Scholar
  23. 23.
    Ahmed AA, Hassan NF (2013) Der Chemica Sinica 4(5):58–61Google Scholar
  24. 24.
    Becke AD (1998) Phys Rev 38:3098–3100CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  26. 26.
    Miehich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  27. 27.
    Scott PA, Radom L (1996) J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  28. 28.
    Fukui F (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  29. 29.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  30. 30.
    Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2013) Gaussian 09, revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  33. 33.
    Yi-Fan HU, Xin LU (2007) Chinese J Struct Chem 27:547–552Google Scholar
  34. 34.
    Andrienko GA. ChemCraft version 1.8.
  35. 35.
    Haddon RC, Wasserman SR, Wudl F, Williams GR (1980) J Am Chem Soc 102:6687–6693CrossRefGoogle Scholar
  36. 36.
    Gupta SP (2013) In: Kakkar R (ed) Theoretical studies on hydroxamic acids. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Elguero E, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles, vol 453. Acad. Press, New York, pp 457–462Google Scholar
  38. 38.
    Valls N, Segarra VM, Alcalde E, Marin A (1985) Adv Synth Catal 327(2):251–260Google Scholar
  39. 39.
    Enchev V, Chorbadjiev S, Jordanov B (2002) Chem Heterocycl Compd 38:1110–1120CrossRefGoogle Scholar
  40. 40.
    Eyring H (1935) J Chem Phys 3:107–115CrossRefGoogle Scholar
  41. 41.
    Bravo-Perez G, Alvarez-Idaboy JR, Cruz-Torres A, Ruiz ME (2002) J Phys Chem A 106:4645–4650CrossRefGoogle Scholar
  42. 42.
    Lacroix PG, Malfant I, Lepetit C (2015) Coord Chem Rev 308:381–394CrossRefGoogle Scholar
  43. 43.
    Zarei SA, Piltan M, Hassanzadeh K, Akhtari K, Cincic D (2015) J Mol Struct 1083:82–87CrossRefGoogle Scholar
  44. 44.
    Jabeen S, Dines TJ, Leharne SA, Withnall R, Chowdhry BZ (2010) J Raman Spectrosc 41:1306–1317CrossRefGoogle Scholar
  45. 45.
    Mitzel NM, Kiener C, Rankin DW (1999) Organometallics 18:3437–3444CrossRefGoogle Scholar
  46. 46.
    Kakkar R, Dua D, Zaidi S (2007) Org Biomol Chem 5:547–557CrossRefGoogle Scholar
  47. 47.
    Yuen CW, Ku SK, Choi PS, Kan SW, Tsang SY (2005) Res J Text Appar 9:26–38CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of BenghaziBenghaziLibya
  2. 2.Departamento de Química OrgánicaUniversidad de ValenciaBurjassotSpain

Personalised recommendations