pp 1–12 | Cite as

The Variation of Crystalline Structure Induced by Gas Dilution and Thermal Annealing in Silicon Layers Deposited by PECVD Technique

  • N. El Arbi
  • R. Jemai
  • K. KhirouniEmail author
  • H. Khemakhem
Original Paper


We prepared hydrogenated thick silicon film by plasma enhanced chemical vapor deposition (PECVD) method using SiH4 and H2 gas mixture and we investigated the effect of the hydrogen dilution ratio defined as \( R=\frac{\left[{H}_2\right]}{\left[{SiH}_4\right]} \) on the as-deposited and annealed films. With increase in hydrogen dilution ratio, amorphous to microcrystalline transition has been observed. The crystallization has been confirmed from Raman spectroscopy, UV reflectance, low angle X-ray diffraction (XRD), spectroscopic ellipsometry and atomic force microscopy (AFM) analysis. Tauc band gap shows a decreasing trend with increasing H2 dilution of silane. It decreases from 1.8 to 1.57 eV. It has been concluded that H2 dilution of silane in PECVD enhances the crystallinity of the film and affects its optical and structural properties.


PECVD Hydrogen dilution Silicon nanocrystallites Crystallization Thermal annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is funded by the Tunisian Ministry of Higher Education and Scientific Research through funds accorded to LaPhyMNE and LaMMA Labs and to the two USCR «Bâti de dépôt de couches minces par PECVD –Faculté des Sciences de Gabès » and « Spectroscopie Raman –Faculté des Sciences de Sfax ». The authors thank Prof. Sahbi Alaya for the careful reading of the text.


  1. 1.
    Ristova M, Kuo Y, Lee HH (2003) Study of hydrogenated amorphous silicon thin films as a potential sensor for He–Ne laser light detection. Appl Surf Sci 218:44–53CrossRefGoogle Scholar
  2. 2.
    Rizzoli R, Summonte C, Pla J, Centurioni E, Ruani G, Desalvo A (2001) Ultrathin μc-Si films deposited by PECVD. Thin Solid Films 383:7–10CrossRefGoogle Scholar
  3. 3.
    Mukhopadhyay S, Das C, Ray S (2004) Structural analysis of undoped microcrystalline silicon thin films deposited by PECVD technique. J Phys D Appl Phys 37:1736–1741CrossRefGoogle Scholar
  4. 4.
    Guha S, Yang J, Willamson DL, Lubianker Y, Cohen JD, Mahn AH (1999) Residual stress in amorphous and nanocrystalline Si films prepared by PECVD with hydrogen dilution. Appl Phys Lett 74:1860–1865CrossRefGoogle Scholar
  5. 5.
    Ambrosone G, Coscia U, Lettieri S, Maddalena P, Ambrico M, Perna G (2006) Microcrystalline silicon thin films grown at high deposition rate by PECVD. Thin Solid Films 280:511–512Google Scholar
  6. 6.
    Fu YQ, Luo JK, Milne SB, Flewitt AJ, Milne WI (2005) Residual stress in amorphous and nanocrystalline Si films prepared by PECVD with hydrogen dilution. Mater Sci Eng B 124:132–137CrossRefGoogle Scholar
  7. 7.
    Kosku N, Kurisu F, Takegashi M, Takahashi H, Miyazaki S (2003) High-rate deposition of highly crystallized silicon films from inductively coupled plasma. Thin Solid Films 435:39–43CrossRefGoogle Scholar
  8. 8.
    Kim IK, Lim JH, Yeom GY (2011) Characteristics of hydrogenated silicon thin film deposited by RF-PECVD using Hee-SiH4 mixture. Vacuum 86:82–86Google Scholar
  9. 9.
    Amrani R, Pichot F, Podlecki J, Foucran A, Chahed L, Cuminal Y (2012) Optical and structural properties of nc-Si:H prepared by argon diluted silane PECVD. J Non-Cryst Solids 358:1978–1982CrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay S, Chowdhury A, Ray S (2006) Substrate temperature dependence of microcrystalline silicon growth by PECVD technique. J Non-Cryst Solids 352:1045–1048CrossRefGoogle Scholar
  11. 11.
    Matsuda A (1983) Formation kinetics and control of microcrystalline in ~c-Si:H from glow discharge plasma. J Non-Cryst Solids 59:767–774CrossRefGoogle Scholar
  12. 12.
    Shirai H, Sakuma Y, Moriya Y, Fukai C, Ueyama H (1999) Fast deposition of microcrystalline silicon using high-density SiH4 microwave plasma. J Appl Phys 38:6629–6635CrossRefGoogle Scholar
  13. 13.
    Fathi E, Vygranenko Y, Vieina M, Sazanov A (2011) Boron-doped nanocrystalline silicon thin films for solar cells. Appl Surf Sci 257:8901–8905CrossRefGoogle Scholar
  14. 14.
    Chen C-Z, Qiu S–H, Liu C-Q, Wu Y–D, Li P, Yu C–Y, Lin X–Y (2008) Low temperature fast growth of nanocrystalline silicon films by rf-PECVD from SiH4/H2 gases: microstructural characterization. J Phys D Appl Phys 41(195413):1–6Google Scholar
  15. 15.
    Zhang L, Gao JH, Xiao JQ, Wen LS, Gong J, Sun C (2012) Low-temperature (120 °C) growth of nanocrystalline silicon films prepared by plasma enhanced chemical vapor deposition from SiCl4/H2 gases: microstructure characterization. Appl Surf Sci 258:3221–3226Google Scholar
  16. 16.
    Al-Masoodi AHH, Hamzan NB, Al-Masoodi AHH, Abdul Rahman S, Tong GB (2016) Influence of hydrogen dilution on the growth of Si-based core-shell nanowires by HWCVD, and their structure and optical properties. Appl Phys A 122(39):1–11Google Scholar
  17. 17.
    Tong GB, Wah CK, Aspanut Z, Abdul Rahman S (2014) Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique. J Mater Sci Mater Electron 25:286–296CrossRefGoogle Scholar
  18. 18.
    Amrani R, Abboud P, Chahed L, Cuminal Y (2012) Low temperature growth of hydrogenated silicon prepared by PECVD from argon diluted plasma. Crystal Structure Theory and Applications 1:62–67CrossRefGoogle Scholar
  19. 19.
    Tong GB, Aspanut Z, Muhamad RR, Abdul Rahman S (2012) Optical properties and cristallinity of hydrogenated nanocrystalline silicon (nc-Si:H)thin films deposited by rf-PECVD. Vacuum 86:1195–1202CrossRefGoogle Scholar
  20. 20.
    Das C, Ray S (2002) Power density in RF PECVD: a factor for deposition of amorphous silicon thin films and successive solid phase crystallization. J Phys D Appl Phys 35:2211–2216CrossRefGoogle Scholar
  21. 21.
    Samanta S, Das D (2017) Nanocrystalline silicon thin films from SiH4 plasma diluted by H2 and He in RF-PECVD. J Phys Chem Solids 105:90–98CrossRefGoogle Scholar
  22. 22.
    Ben Amor S, Dimassi W, Tebai MA, Ezzaouia M (2012) Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition. Physica Status Solidi C 9:2180–2183Google Scholar
  23. 23.
    Tong G, Muhamad RR, Abdul Rahman S (2012) Photoluminescence and structural properties of silicon nanostructures grown by layer-by-layer deposition. Opt Mater 34:1282–1288CrossRefGoogle Scholar
  24. 24.
    Elarbi N, Jemaï R, Outzourhit A, Khirouni K (2016) Amorphous/microcrystalline transition of thick silicon film deposited by PECVD. Appl Phy A 122:1–6CrossRefGoogle Scholar
  25. 25.
    Haddadi I, Ben Slama S, Ben Amor S, Bousbih R, Bardaoui A, Dimassi W, Ezzaouia H (2015) Effect of rapid thermal treatment on optical properties of porous silicon surface doped lithium. J Lumin 160:176–180CrossRefGoogle Scholar
  26. 26.
    Ali AM, Kobayashi H (2014) Hydrogen effect on nanostructural features of nanocrystalline silicon thin films deposited at 200°C by PECVD. J Non Cryst Solids 385:17–23CrossRefGoogle Scholar
  27. 27.
    Ali AM (2006) Mechanisms of the growth of nanocrystalline Si:H films deposited by PECVD. J Non-Cryst Solids 352:3126–3133Google Scholar
  28. 28.
    Waman VS, Kamble MM, Ghosh SS, Mayabadi AH, Gabhale BB, Rondiya SR, Rokade AV, Khadtare SS, Sathe SG, Pathan HM, Gosavi SW, Jadkar SR (2014) Evolution of microstructure and opto-electrical properties in boron doped nc-Si:H films deposited by HW-CVD method. J Alloy Comp 585:523–528CrossRefGoogle Scholar
  29. 29.
    Funde AM, Bakr NA, Kamble DK, Hawaldar RR, Amalnerkar DP, Jadkar SR (2008) Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si: H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD). Sol Energy Mater Sol Cells 92:1217–1223CrossRefGoogle Scholar
  30. 30.
    Ray S, Mukhopdhyay S, Jana T, Carius R (2002) Transition from amorphous to microcrystalline Si:H: effects of substrate temperature and hydrogen dilution. J Non-Cryst Solids 761:229–302Google Scholar
  31. 31.
    Kondo M (2003) Microcrystalline materials and cells deposited by RF glow discharge. Sol Energy Mater Sol Cells 78:543–566CrossRefGoogle Scholar
  32. 32.
    Gogoi P, Agarwal P (2009) Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature. Sol Energy Mater Sol Cells 93:199–205CrossRefGoogle Scholar
  33. 33.
    Bakr NA (2012) Helium induced structural disorder in hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by HW-CVD method. J Nano and Elect Phys 4(3006):1–7Google Scholar
  34. 34.
    Shutzmann M (1994) Handbook in semiconductors, vol 3A. NorthHolland, AmsterdamGoogle Scholar
  35. 35.
    Schropp REI (1998) Zeman , M., amorphous and microcrystalline silicon solar cells: modelling, materials and devices, technology, 1998, vol 21. Kluwer Academic, BostonGoogle Scholar
  36. 36.
    EL-Naggar AM (2001) Influence of thickness on the optical properties of vacuum-deposited a-Si:H films. Opt Laser Technol 33:237–242CrossRefGoogle Scholar
  37. 37.
    Yan B, Yue G, Yang J, Guha S (2013) On the bandgap of hydrogenated nanocrystalline silicon intrinsic materials used in thin film silicon solar cells. Sol Energy Mater Sol Cells 111:90–96CrossRefGoogle Scholar
  38. 38.
    Yamaguchi M, Morigaki K (1991) The correlation between hydrogen content and electronic properties in a-Si:H. J Non-Cryst Solids 137:57–60CrossRefGoogle Scholar
  39. 39.
    Mahan A, Yang J, Guha S, Williamson DL (2000) Structural changes in a−Si:H film crystallinity with high H dilution. Phys Rev B 61:1677–1680CrossRefGoogle Scholar
  40. 40.
    Van Den Heuvel JC, Geerts MJ, Metselaar JW (1991) The relation between the optical properties and the hydrogen concentration in a-Si:H. Sol Energy Mater 22:185–194CrossRefGoogle Scholar
  41. 41.
    Hamui L, Monroy BM, Kim KH, Lopez-Suarez A, Santoyo-Salazar J, Lopez-Lopez M, iCabarrocas R, Santana G (2016) Effect of deposition temperature on polymorphous silicon thin films by PECVD: role of hydrogen. Mater Sci Semicond Process 41:390–397CrossRefGoogle Scholar
  42. 42.
    Achiq A, Rizk R, Gourbilleau F, Madrante R, Garrido B, Perez Rodriguez A, Madrante JR (1998) Effects of prior hydrogenation on the structure and properties of thermally nanocrystallized silicon layers. J Appl Phys 83:5797–5803CrossRefGoogle Scholar
  43. 43.
    Kroll U, Meier J, Shah A, Mikhailov S, Waber J (1996) Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution. J Appl Phys 80:4971–4975CrossRefGoogle Scholar
  44. 44.
    Achiq A, Rizk R, Gourbilleau F, Voivenel P (1999) Effects of hydrogen partial pressure on the structure and properties of sputtered silicon layers. Thin Solid Films 348:74–78CrossRefGoogle Scholar
  45. 45.
    Jadhavar A, Pawbake A, Waykar R, Jadkar V, Kulkarni R, Bhorde A, Rondiya S, Funde A, Patil D, Date A, Pathan H, Jadkar S (2017) Growth of hydrogenated nano-crystalline silicon (nc-Si:H) films by plasma enhanced chemical vapor deposition (PE-CVD). Ener Proc 110:45–52CrossRefGoogle Scholar
  46. 46.
    Jadhavar A, Pawbake A, Waykar R, Waman V, Rondiya S, Shinde O, Kulkarni R, Rokade A, Bhorde A, Funde A, Patil D, Pathan H, Jadkar S (2016) Influence of RF power structural optical and electrical properties of hydrogenated nano-crystalline silicon (nc-Si:H) thin films deposited by PE-CVD. J Mater Sci Mater Electron 27(12):12365–12373CrossRefGoogle Scholar
  47. 47.
    Tong GB, Aspanut Z, Rasat Muhamad M, Abdul Rahman S (2012) Optical properties and crystallinity of hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by rf-PECVD. Vacuum 86:1195–1202CrossRefGoogle Scholar
  48. 48.
    Tong G, Yow CC, Kong CS, Abdul Gani SM, Muhamad RR, Abdul Rahman S (2008) Post-thermal annealing effects on the optical, structural and morphological properties of hydrogenated silicon (Si:H) thin films prepared by layer-by-layer deposition technique. ICSE 2008 proc. Johor Bahru, MalaysiaGoogle Scholar
  49. 49.
    Fujiwara H (2007) Spectroscopic Ellipsometry: principles and applications. Wiley & Sons, EnglandCrossRefGoogle Scholar
  50. 50.
    Azzam RMA, Bashara NM (1987) Ellipsometry and polarized light. Elsevier Science, AmsterdamCrossRefGoogle Scholar
  51. 51.
    Jellison Jr GE, Modine FA (1996) Parameterization of the optical functions of amorphous materials in the interband region. Appl Phys Lett 69:371–373CrossRefGoogle Scholar
  52. 52.
    Hamers EA, FontcubertaiMorral A, Niikura C, Brenot R, Roca iCabarrocas P (2000) Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films. J Appl Phys 88:3674–3688CrossRefGoogle Scholar
  53. 53.
    Hamma S, Roca i Cabarrocas P (1998) Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution. J Non-Cryst Solids 852:227–230Google Scholar
  54. 54.
    Das D, Solid State Commun (2003) Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD. 128, 397Google Scholar
  55. 55.
    Chakraborty M, Banerjee A, Das D (2014) Spectroscopic studies on nanocrystalline silicon thin films prepared from H2 –diluted SiH4 –plasma in inductively low pressure RF PECVD. Phys E 61:95–100CrossRefGoogle Scholar
  56. 56.
    Kumar S, Pandya DK, Chopra KL (1988) A spectroscopic ellipsometry study of the growth and microstructure of glowdischarge amorphous and microcrystalline silicon films. J Appl Phys 63:1497–1503CrossRefGoogle Scholar
  57. 57.
    Fujiwara H, Kondo M, Matsuda A (2001) Real-time ellipsometry studies of the nucleation and grain growth processes in microcrystalline thin films. Phys Rev B 63:11, 115306, 1–9Google Scholar
  58. 58.
    Das D, Bhattacharya K (2006) Characterization of the Si:H network during transformation from amorphous to micro-and nanocrystalline structures. J Appl Phys 100:103701CrossRefGoogle Scholar
  59. 59.
    Park J, Iftiquar SM, Kim Y, Park S, Lee S, Kim J, Yi J (2012) Spectroscopic ellipsometry analysis of amorphous silicon thin films for Si-nanocrystals. J Nanosci Nanotechnol 12(4):3228–3232CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mrázková Z, Postava K, Torres-Rios A, Foldyna M, Roca iCabarrocas P, Pištora J (2016) Optical modeling of microcrystalline silicon deposited by plasma-enhanced chemical vapor deposition on low-cost iron-nickel substrates for photovoltaic applications. Procedia Materials Science 12:130–135Google Scholar
  61. 61.
    Feng GF, Katiyar M, Abelson JR, Maley N (1992) Dielectric functions and electronic band states of a-Si and a-Si: H. Phys Rev B 45:9103–9107CrossRefGoogle Scholar
  62. 62.
    Kumar S, Drevillon B, Godet C (1986) Insitu spectroscopic ellipsometry study of the growth of microcrystalline silicon. J Appl Phys 60:1542–1544CrossRefGoogle Scholar
  63. 63.
    Das D (2005) Structural studies on Si:H network by Raman, micro-photoluminescence, electron microscopy and ultraviolet ellipsometry: effect of Ar dilution to the SiH4-plasma. Thin Solid Films 476:237–245CrossRefGoogle Scholar
  64. 64.
    Shaaban ER, Yahia IS, El-Mettwally EG (2012) Validity of swanepoel’s method for calculating the optical constants of thick films. Acta Phys Pol A 121:628–635CrossRefGoogle Scholar
  65. 65.
    Wemple SH, Didomenico M (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23:1156–1160CrossRefGoogle Scholar
  66. 66.
    Wemple SH, Didomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338–1351CrossRefGoogle Scholar
  67. 67.
    Amartya G, Sumita M, Swati R (2007) Structural and transport properties of nanocrystalline silicon thin films prepared at 54.24 MHz plasma excitation frequency. J Cryst Growth 304:352CrossRefGoogle Scholar
  68. 68.
    Tanaka K (1980) Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66(3):271–279CrossRefGoogle Scholar
  69. 69.
    Ram SK, Islam MN, Roca iCabarrocas P, Kumar S (2008) Structural determination of nanocrystalline Si films using ellipsometry and Raman spectroscopy. Thin Solid Films 516:6863–6868CrossRefGoogle Scholar
  70. 70.
    Chaibi F, Jemai R, Aguas H, Khemakhem H, Khirouni K (2017) The effects of argon and helium dilution in the growth of nc-Si:H thin films by plasma-enhanced chemical vapor deposition, accepted in J Mater Sci.
  71. 71.
    Weng MH, Pan CT, Huang CW, Yang RY (2014) Improving the microstructure and electrical properties of aluminum induced polysilicon thin films using silicon nitride capping layer. J Nanomater 342478:1–9Google Scholar
  72. 72.
    Budini N, Rinaldi PA, Schmidt JA, Arce RD, Buitnago RH (2010) Influence of microstructure and hydrogen concentration on amorphous silicon crystallization. Thin Solid Films 518:5349–5354CrossRefGoogle Scholar
  73. 73.
    Jun S–IK, Rack PD, Mcknight TE, Melechko AV, Simpson ML (2006) Low –temperature solid-phase crystallization of silicon thin films deposited by rf magnetron sputtering with substrate bias. Appl Phys Lett 89(022104):1–3Google Scholar
  74. 74.
    Anutgan T, Uysal S (2013) Low temperature plasma production of hydrogenated nanocrystalline silicon thin films. Curr Appl Phy 13:181–188CrossRefGoogle Scholar
  75. 75.
    Ambrosio R, Moreno M, Torres A, Carillo A, Vivaldo I, Cosme I, Heredia A (2015) Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells, J. Alloys Compd 643:527–532CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • N. El Arbi
    • 1
  • R. Jemai
    • 1
  • K. Khirouni
    • 1
    Email author
  • H. Khemakhem
    • 2
  1. 1.Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l’Environnement, Faculté desSciences de GabèsUniversité de GabèsGabèsTunisia
  2. 2.Laboratoirede Matériaux Multifonctionnels et ApplicationsFaculté des Sciences de Sfax Université de SfaxSfaxTunisia

Personalised recommendations