Advertisement

Silicon

pp 1–13 | Cite as

Experimental Study of CO2 and CH4 Permeability Values Through PebaxⓇ-1074/Silica Mixed Matrix Membranes

  • Saba Azizi
  • Navid Azizi
  • Reza Homayoon
Original Paper

Abstract

In this research, mixed matrix membranes (MMMs) composed of poly(ether-block-amide) (PebaxⓇ-1074) and silica (SiO2) were prepared. Silica nanoparticles were distributed uniformly in the PebaxⓇ matrix without significant agglomerations and defects at the loadings of 0.0, 2.5, 5.0, 7.5 and 10 wt.%, confirming by field emission scanning electron microscopy (FESEM). Attenuated total reflection-Fourier transfer infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) were also carried out to identify functional groups, crystalline structure and thermal stability of the prepared membranes, respectively. The incorporation of silica nanoparticles resulted in significant improvements in CO2 permeability and consequently ideal CO2/CH4 selectivity. At 10 wt.% loading of silica nanoparticles, the MMM exhibited the best separation performance with the CO2 permeability of 105.94 Barrer and CO2/CH4 selectivity of 26.09 which are significantly higher than the neat membrane properties.

Keywords

Mixed matrix membrane PebaxⓇ-1074 Silica nanoparticles CO2/CH4 separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azizi N, Zarei MM (2017) CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Pet Sci Technol 35(9):869–874CrossRefGoogle Scholar
  2. 2.
    Azizi N, Hojjati MR, Zarei MM (2018) Study of CO2 and CH4 Permeation Properties through Prepared and Characterized Blended Pebax-2533/PEG-200 Membranes. Silicon 10 (4):1461–1467CrossRefGoogle Scholar
  3. 3.
    Goh P, Ismail A, Sanip S, Ng B, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81(3):243–264CrossRefGoogle Scholar
  4. 4.
    Jazebizadeh MH, Khazraei S (2017) Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon 9(5):775–784CrossRefGoogle Scholar
  5. 5.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Mem Sci 62(2):165–185CrossRefGoogle Scholar
  6. 6.
    Robeson LM (2008) The upper bound revisited. J Mem Sci 320(1):390–400CrossRefGoogle Scholar
  7. 7.
    Bondar V, Freeman B, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci B Polym Phys 38(15):2051–2062CrossRefGoogle Scholar
  8. 8.
    Azizi N, Mahdavi HR, Isanejad M, Mohammadi T (2017) Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. J Polym Res 24(9):141CrossRefGoogle Scholar
  9. 9.
    Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  10. 10.
    Wang M, Wang Z, Zhao S, Wang J, Wang S (2017) Recent advances on mixed matrix membranes for CO2 separation. Chin J Chem Eng 25 (11):1581–1597.  https://doi.org/10.1016/j.cjche.2017.07.006 CrossRefGoogle Scholar
  11. 11.
    George G, Bhoria N, AlHallaq S, Abdala A, Mittal V (2016) Polymer membranes for acid gas removal from natural gas. Sep Purif Technol 158:333–356.  https://doi.org/10.1016/j.seppur.2015.12.033 CrossRefGoogle Scholar
  12. 12.
    Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. J Energy Chem 26(3):454–465.  https://doi.org/10.1016/j.jechem.2016.11.018 CrossRefGoogle Scholar
  13. 13.
    Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 37:39–51.  https://doi.org/10.1016/j.jngse.2016.11.038 CrossRefGoogle Scholar
  14. 14.
    Azizi N, Mohammadi T, Mosayebi Behbahani R (2017) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2 O 3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189.  https://doi.org/10.1016/j.cherd.2016.10.018 CrossRefGoogle Scholar
  15. 15.
    Murali RS, Kumar KP, Ismail A, Sridhar S (2014) Nanosilica and H-Mordenite incorporated Poly (ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 197:291–298CrossRefGoogle Scholar
  16. 16.
    Isanejad M, Mohammadi T (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater Chem Phys 205:303–314.  https://doi.org/10.1016/j.matchemphys.2017.11.018 CrossRefGoogle Scholar
  17. 17.
    Ghadimi A, Mohammadi T, Kasiri N (2014) A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Ind Eng Chem Res 53(44):17476–17486CrossRefGoogle Scholar
  18. 18.
    Feng S, Ren J, Hua K, Li H, Ren X, Deng M (2013) Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Sep Purif Technol 116:25–34CrossRefGoogle Scholar
  19. 19.
    Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in PebaxⓇ MH-1657 for CO2 separation. Sep Purif TechnolGoogle Scholar
  20. 20.
    Jomekian A, Behbahani RM, Mohammadi T, Kargari A (2016) CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. J Nat Gas Sci Eng 31:562–574CrossRefGoogle Scholar
  21. 21.
    Ghadimi A, Mohammadi T, Kasiri N (2016) Mathematical modeling of the gas transport through PEBAX/(nonporous silica) nanocomposite membranes: Development based on Van Amerongen and Van Krevelen relations. Sep Purif Technol 170:280–293.  https://doi.org/10.1016/j.seppur.2016.06.043 CrossRefGoogle Scholar
  22. 22.
    Ataeivarjovi E, Tang Z, Chen J (2018) Study on CO2 Desorption Behavior of a PDMS-SiO2 Hybrid Membrane Applied in a Novel CO2 Capture Process. ACS applied materials & interfacesGoogle Scholar
  23. 23.
    Azizi N, Arzani M, Mahdavi HR, Mohammadi T (2017) Synthesis and characterization of poly (ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean J Chem Eng 34(9):2459–2470CrossRefGoogle Scholar
  24. 24.
    Isanejad M, Azizi N, Mohammadi T (2017) Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. J Appl Polym Sci 134(9):44531–44540.  https://doi.org/10.1002/app.44531 CrossRefGoogle Scholar
  25. 25.
    Mahdavi HR, Azizi N, Arzani M, Mohammadi T (2017) Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. J Nat Gas Sci Eng 46:275–288CrossRefGoogle Scholar
  26. 26.
    Mahdavi HR, Azizi N, Mohammadi T (2017) Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2 O 3 membrane for CO2/CH4 separation using response surface methodology. J Polym Res 24(5).  https://doi.org/10.1007/s10965-017-1228-1
  27. 27.
    Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J Mem Sci 193(2):209–225CrossRefGoogle Scholar
  28. 28.
    Ren X, Ren J, Li H, Feng S, Deng M (2012) Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. Int J Greenh Gas Control 8:111–120CrossRefGoogle Scholar
  29. 29.
    Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRefGoogle Scholar
  30. 30.
    Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X (2018) Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. J Mem Sci 549:670–679CrossRefGoogle Scholar
  31. 31.
    Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C (2016) Preparation of poly (ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. J Mem Sci 500:66–75CrossRefGoogle Scholar
  32. 32.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5(100):82460–82470CrossRefGoogle Scholar
  33. 33.
    Aghaei Z, Naji L, Asl VH, Khanbabaei G, Dezhagah F (2018) The influence of fumed silica content and particle size in poly (amide 6-b-ethylene oxide) mixed matrix membranes for gas separation. Sep Purif Technol 199:47–56CrossRefGoogle Scholar
  34. 34.
    Ismail AF, Khulbe KC, Matsuura T (2015) Gas Separation Membrane Materials and Structures. In: Gas Separation Membranes. Springer, Berlin, pp 37–192Google Scholar
  35. 35.
    Murali RS, Sridhar S, Sankarshana T, Ravikumar Y (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49(14):6530–6538CrossRefGoogle Scholar
  36. 36.
    Yampolskii Y, Freeman B (2010) Membrane gas separation, vol 34. Wiley Online Library, BerlinCrossRefGoogle Scholar
  37. 37.
    Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly (ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J Mem Sci 458:14–26CrossRefGoogle Scholar
  38. 38.
    Choi MC, Jung JY, Yeom HS, Chang YW (2013) Mechanical, thermal, barrier, and rheological properties of poly (ether-block-amide) elastomer/organoclay nanocomposite prepared by melt blending. Polym Eng Sci 53(5):982–991CrossRefGoogle Scholar
  39. 39.
    Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/h2 (syngas application). J Membr Sci 458:14–26.  https://doi.org/10.1016/j.memsci.2014.01.048 CrossRefGoogle Scholar
  40. 40.
    Rabiee H, Ghadimi A, Abbasi S, mohammadi T (2015) CO2 separation performance of poly(ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties. Chem Eng Res Des 98:96–106.  https://doi.org/10.1016/j.cherd.2015.03.026 CrossRefGoogle Scholar
  41. 41.
    Dixon D, Boyd A (2011) Degradation and accelerated ageing of poly (ether block amide) thermoplastic elastomers. Polym Eng Sci 51(11):2203–2209CrossRefGoogle Scholar
  42. 42.
    Wang Y, Ren J, Deng M (2011) Ultrathin solid polymer electrolyte PEI/Pebax2533/AgBF4 composite membrane for propylene/propane separation. Sep Purif Technol 77(1):46–52CrossRefGoogle Scholar
  43. 43.
    Kim YML J.H. (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J Mem Sci 193:209–225CrossRefGoogle Scholar
  44. 44.
    Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G (2016) Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep Purif Technol 166:171–180.  https://doi.org/10.1016/j.seppur.2016.04.038 CrossRefGoogle Scholar
  45. 45.
    Nordin NAHM, Racha SM, Matsuura T, Misdan N, Sani NAA, Ismail AF, Mustafa A (2015) Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Adv 5(54):43110–43120CrossRefGoogle Scholar
  46. 46.
    Takahashi S, Paul D (2006) Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to matrix. Polymer 47(21):7519–7534CrossRefGoogle Scholar
  47. 47.
    Matteucci S, Kusuma VA, Sanders D, Swinnea S, Freeman BD (2008) Gas transport in TiO2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). J Mem Sci 307(2):196–217CrossRefGoogle Scholar
  48. 48.
    Shariati A, Omidkhah M, Pedram MZ (2012) New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chem Eng Res Des 90(4): 563–575CrossRefGoogle Scholar
  49. 49.
    Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Mem Sci 460:62–70CrossRefGoogle Scholar
  50. 50.
    Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi SA, Ghadimi A (2015) Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J Ind Eng Chem 27:223–239.  https://doi.org/10.1016/j.jiec.2014.12.039 CrossRefGoogle Scholar
  51. 51.
    Rabiee H, Ghadimi A, Abbasi S (2015) CO2 separation performance of poly (ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties. Chem Eng Res Des 98: 96–106CrossRefGoogle Scholar
  52. 52.
    Rabiee H, Ghadimi A, Mohammadi T (2015) Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. J Mem Sci 476:286–302.  https://doi.org/10.1016/j.memsci.2014.11.037 CrossRefGoogle Scholar
  53. 53.
    Adewole J, Ahmad A, Ismail S, Leo C (2013) Current challenges in membrane separation of CO2 from natural gas: A review. Int J Greenh Gas Control 17:46–65CrossRefGoogle Scholar
  54. 54.
    Ehsani A, Pakizeh M (2016) Synthesis, characterization and gas permeation study of ZIF-11/pebaxⓇ 2533 mixed matrix membranes. J Taiwan Inst Chem Eng 66:414–423CrossRefGoogle Scholar
  55. 55.
    Murali RS, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8CrossRefGoogle Scholar
  56. 56.
    Nafisi V, Hägg M -B (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Mem Sci 459:244–255CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakIran
  2. 2.Department of Chemical EngineeringShiraz Branch, Islamic Azad UniversityShirazIran

Personalised recommendations