Advertisement

Silicon

pp 1–8 | Cite as

Fabrication and Characterization of a Photodiode Based on 5,5′′-dibromo-o-cresolsulfophthalein (BCP)

  • A. M. MansourEmail author
Original Paper
  • 10 Downloads

Abstract

5\(^{\prime },5^{\prime \prime }\)-dibromo-o-cresolsulfophthalein (BCP) films were deposited on glass, quartz, and n-Si substrates by using conventional thermal evaporation method. XRD studies showed that the BCP has a polycrystalline structure in powder form and a nanocrystalline structure in thin film form. The nanostructure character of BCP films is confirmed by using a high-resolution transmission electron microscope (HRTEM). Thermal stability and phase change were examined by means of thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC), respectively. Optical absorption studies of BCP films were done in the wavelength range 200-2500 nm. The films showed a direct optical energy gap of 1.89 eV. Current versus voltage (I-V ) characteristics of Au/BCP/n-Si/Al were studied in darkness and in illumination modes. The device shows photoinduced charge transfer and can be used as a photodiode.

Keywords

Bromocresolpurple (BCP) Thermal analysis Optical Current-voltage Photodiode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dey A, Singh A, Das D, Iyer PK (2015) Organic Semiconductors: a new future of nanodevices and applications. In: Thin film structures in energy applications. Springer International Publishing, Cham, pp 97–128Google Scholar
  2. 2.
    Mansour AM, El-Taweel FMAA, Abu El-Enein RANN, El-Menyawy EM (2017) Structural, optical, electrical and photoelectrical properties of 2-Amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4H-pyrano[3,2-c] quinoline-3-carbonitrile films. J Electron Mater 46:1–8.  https://doi.org/10.1007/s11664-017-5739-7 CrossRefGoogle Scholar
  3. 3.
    El-Menyawy EM, Zedan IT, Mansour AM (2017) Electrical conductivity and dielectrical properties of bulk methylene green. J Electron Mater 46:4353–4358.  https://doi.org/10.1007/s11664-017-5414-z CrossRefGoogle Scholar
  4. 4.
    El-Menyawy EM, Mansour AM, El-Ghamaz NA, El-Khodary SA (2013) Electrical conduction mechanisms and thermal properties of 2-(2, 3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl) acetonitrile. Phys B Condens Matter 413:31–35.  https://doi.org/10.1016/j.physb.2012.12.030 CrossRefGoogle Scholar
  5. 5.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723.  https://doi.org/10.1063/1.1534621 CrossRefGoogle Scholar
  6. 6.
    Marks RN, Halls JJM, Bradley DDC et al (1994) The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys Condens Matter 6:1379–1394.  https://doi.org/10.1088/0953-8984/6/7/009 CrossRefGoogle Scholar
  7. 7.
    Yan H, Chen Z, Zheng Y et al (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686.  https://doi.org/10.1038/nature07727 CrossRefPubMedGoogle Scholar
  8. 8.
    Tzamalis G, Lemaur V, Karlsson F et al (2010) Fluorescence light emission at 1 eV from a conjugated polymer. Chem Phys Lett 489:92–95.  https://doi.org/10.1016/J.CPLETT.2010.02.049 CrossRefGoogle Scholar
  9. 9.
    Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643.  https://doi.org/10.1039/b909902f CrossRefPubMedGoogle Scholar
  10. 10.
    Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425.  https://doi.org/10.1002/adma.200501152 CrossRefGoogle Scholar
  11. 11.
    Boudrioua A, Chakaroun M, Fischer A (2017) An Introduction to Organic LasersCrossRefGoogle Scholar
  12. 12.
    Layek A, Middya S, Dey A et al (2014) Study of resonance energy transfer between MEH-PPV and CuFeS2nanoparticle and their application in energy harvesting device. J Alloys Compd 613:364–369.  https://doi.org/10.1016/j.jallcom.2014.06.007 CrossRefGoogle Scholar
  13. 13.
    Middya S, Layek A, Dey A et al (2014) Role of zinc oxide nanomorphology on Schottky diode properties. Chem Phys Lett 610–611:39–44.  https://doi.org/10.1016/j.cplett.2014.07.003 CrossRefGoogle Scholar
  14. 14.
    Halder S, Dey A, Bhattacharjee A et al (2017) A cd(II)-based MOF as a photosensitive Schottky diode: Experimental and theoretical studies. Dalt Trans 46:11239–11249.  https://doi.org/10.1039/c7dt02184d CrossRefGoogle Scholar
  15. 15.
    Brütting W, Adachi C (2012) Physics of organic semiconductors, 2nd. Wiley Online Library. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  16. 16.
    Jacob M (2008) Organic semiconductors. In: The materials science of semiconductors. MDPI AG, Basel, pp 395–453Google Scholar
  17. 17.
    Knaapila M (2017) Conjugated polymers and oligomers: Structural and soft matter aspects. World Scientific Publishing Co Pte Ltd, SingaporeGoogle Scholar
  18. 18.
    Siegmar Roth DC (2004) One-Dimensional Metals: Conjugated polymers, organic crystals carbon nanotubes, 2nd. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  19. 19.
    Grimmett MR (2002) Science of synthesis: Houben-Weyl Methods of molecular transformations. Thieme, StuttgartGoogle Scholar
  20. 20.
    Al-Ahmad AY, Al-Mudhaffer MF, Badran HA, Emshary CA (2013) Nonlinear optical and thermal properties of BCP: PMMA films determined by thermal self-diffraction. Opt Laser Technol 54:72–78.  https://doi.org/10.1016/j.optlastec.2013.05.009 CrossRefGoogle Scholar
  21. 21.
    Koçak S, Aslişen B (2014) Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem 196:610–618.  https://doi.org/10.1016/j.snb.2014.02.061 CrossRefGoogle Scholar
  22. 22.
    Ray PC, Das PK (1995) First-order hyperpolarizabilities of sulfophthalein dyes. J Phys Chem 99:14414–14417.  https://doi.org/10.1021/j100039a032 CrossRefGoogle Scholar
  23. 23.
    Walsh CA, Burland DM, Lee VY et al (1993) Orientational relaxation in electric field poled guest—host and side-chain polymers below Tg. Macromolecules 26:3720–3722CrossRefGoogle Scholar
  24. 24.
    Choi DH, Kim HM, Wijekoon WMKP, Prasad PN (1992) Synthesis and Second-Order nonlinear optical properties of polymethacrylates containing organic salt dye chromophore. Chem Mater 4:1253–1256.  https://doi.org/10.1021/cm00024a026 CrossRefGoogle Scholar
  25. 25.
    Wang Y, Tong LL (2010) Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors Actuators B Chem 150:43–49.  https://doi.org/10.1016/j.snb.2010.07.044 CrossRefGoogle Scholar
  26. 26.
    Choudhury S, Chitra R, Yakhmi JV (2003) Studies on the formation of Langmuir monolayer and Langmuir-Blodgett films of octadecyl amine-bromocresol purple dye complex. Thin Solid Films 440:240–246.  https://doi.org/10.1016/S0040-6090(03)00857-5 CrossRefGoogle Scholar
  27. 27.
    Shrestha S, Mascarenhas RJ, D’Souza OJ et al (2016) Amperometric sensor based on multi-walled carbon nanotube and poly (Bromocresol purple) modified carbon paste electrode for the sensitive determination of L-tyrosine in food and biological samples. J Electroanal Chem 778:32–40.  https://doi.org/10.1016/j.jelechem.2016.08.010 CrossRefGoogle Scholar
  28. 28.
    Alves R, da Silva Reis TV, da Silva LCC, Storpírtis, Mercuri LP, do Rosário Matos J (2010) Thermal behavior and decomposition kinetics of rifampicin polymorphs under isothermal and non-isothermal conditions. Brazilian J Pharm Sci 46:343–351.  https://doi.org/10.1590/S1984-82502010000200022 CrossRefGoogle Scholar
  29. 29.
    Wiedemann HG (1972) Advances in instrumentation. Birkhäuser Basel.  https://doi.org/10.1007/978-3-0348-7413-7 Google Scholar
  30. 30.
    Wunderlich B (2007) Thermal analysis of macromolecules. J Therm Anal Calorim 89:321–356.  https://doi.org/10.1007/s10973-006-8219-5 CrossRefGoogle Scholar
  31. 31.
    Farag AAMAM, Mansour AMM, Ammar AHH, Rafea MAA (2011) Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synth Met 161:2135–2143.  https://doi.org/10.1016/j.synthmet.2011.08.015 CrossRefGoogle Scholar
  32. 32.
    Farag AAM, Mansour AM, Ammar AH et al (2012) Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application. J Alloys Compd 513:404–413.  https://doi.org/10.1016/j.jallcom.2011.10.058 CrossRefGoogle Scholar
  33. 33.
    Arif B (2015) Determination of optical constants of ZnO growth by PECVD method. J Mater Electron Devices 1:28–32.  https://doi.org/10.13140/RG.2.1.2796.6485 CrossRefGoogle Scholar
  34. 34.
    Aksoy S, Ruzgar S (2017) Effect of N doped on optical properties of ZnO film deposited by sol gel. J Mater Electron Devices 1:1–4Google Scholar
  35. 35.
    Nasr M, El Radaf IM, Mansour AM (2018) Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids 115:283–288.  https://doi.org/10.1016/j.jpcs.2017.12.029 CrossRefGoogle Scholar
  36. 36.
    Ilhan M (2015) Electrical characterization of Al/fluorescein sodium salt organic semiconductor/Au diode by current-voltage and capacitance-voltage methods. J Mater Electron Devices 1:15–20Google Scholar
  37. 37.
    Altndal S (2015) On the origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky barrier diodes (SBDs). J Mater Electron Devices 1:42Google Scholar
  38. 38.
    Farag AAM, Terra FS, Mahmoud GM, Mansour AM (2009) Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation. J Alloys Compd 481:427–433.  https://doi.org/10.1016/j.jallcom.2009.03.004 CrossRefGoogle Scholar
  39. 39.
    El Radaf IM, Nasr M, Mansour AM (2018) Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express 5:015904.  https://doi.org/10.1088/2053-1591/aaa25e CrossRefGoogle Scholar
  40. 40.
    Crowell CR, Sze SM (1966) Current transport in metal-semiconductor barriers. Solid State Electron 9:1035–1048.  https://doi.org/10.1016/0038-1101(66)90127-4 CrossRefGoogle Scholar
  41. 41.
    Erdogan IY, Gullu O (2010) Silicon MIS diodes with Cr2O3 nanofilm: optical, morphological/structural and electronic transport properties. Appl Surf Sci 256:4185–4191.  https://doi.org/10.1016/j.apsusc.2010.01.122 CrossRefGoogle Scholar
  42. 42.
    Farag AAMAMM, Osiris WGG, Ammar AHH, Mansour AMM (2013) Electrical and photosensing performance of heterojunction device based on organic thin film structure. Synth Met 175:81–87.  https://doi.org/10.1016/j.synthmet.2013.04.030 CrossRefGoogle Scholar
  43. 43.
    Kumar S, Kanjilal D (2006) Barrier height modification of Au/n-Si Schottky structures by swift heavy ion irradiation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 248:109–112.  https://doi.org/10.1016/j.nimb.2006.03.174 CrossRefGoogle Scholar
  44. 44.
    Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053.  https://doi.org/10.1063/1.325607 CrossRefGoogle Scholar
  45. 45.
    Farag AAM, Terra FS, Ashery A et al (2018) Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy. Indian J Pure Appl Phys 56:203–209. http://op.niscair.res.in/index.php/IJPAP/article/view/10627/465464659 Google Scholar
  46. 46.
    Aydn ME, Türüt A (2007) The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts. Microelectron Eng 84:2875–2882.  https://doi.org/10.1016/J.MEE.2007.02.010 CrossRefGoogle Scholar
  47. 47.
    El-Menyawy EM, Zedan IT (2015) Optical properties and device characteristics of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile thin films for photodiode applications. Spectrochim Acta Part A Mol Biomol Spectrosc 137:810–816.  https://doi.org/10.1016/J.SAA.2014.09.006 CrossRefGoogle Scholar
  48. 48.
    Brazovskii S, Kirova N, Bishop AR (1998) Theory of electronic states and excitations in PPV. Opt Mater (Amst) 9:465–471.  https://doi.org/10.1016/S0925-3467(97)00120-1 CrossRefGoogle Scholar
  49. 49.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945.  https://doi.org/10.1557/JMR.2004.0252 CrossRefGoogle Scholar
  50. 50.
    Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896.  https://doi.org/10.1021/cr941014o CrossRefPubMedGoogle Scholar
  51. 51.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, OxfordGoogle Scholar
  52. 52.
    Yakuphanoglu F (2008) Photovoltaic properties of the organic–inorganic photodiode based on polymer and fullerene blend for optical sensors. Sensors Actuators A Phys 141:383–389.  https://doi.org/10.1016/J.SNA.2007.10.023 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Solid State Physics Department, Physics Research DivisionNational Research CentreGizaEgypt

Personalised recommendations