Advertisement

Silicon

pp 1–9 | Cite as

Synthesis, Mechanical and Optical Features of Dy2O3 Doped Lead Alkali Borosilicate Glasses

  • Kh. S. Shaaban
  • Atif Mossad Ali
  • Y. B. Saddeek
  • K. A. Aly
  • Alaa Dahshan
  • S. A. Amin
Original Paper
  • 24 Downloads

Abstract

Characterizations of the prepared pseudo penta-glass system 60 PbO – (40-x) SiO2 – x (0.1 Li2O – 0.86 B2O3 – 0.04 Dy2O3) with 0 ≤ x ≤ 30 mol% were performed in terms of the ultrasonic and spectroscopic techniques. The increase of (0.1 Li2O – 0.86 B2O3 – 0.04 Dy2O3) content causes borate structural variations such as the transformation of [BO3] to [BO4] structural units and enhancement of the compactness of the glasses. These physical parameters play an important role in modifying the mechanical and the optical properties of the lead silicate glasses. The improvement of the mechanical properties is indicated from the increment of the density, the ultrasonic velocities, the elastic moduli (experimentally determined and theoretically computed) and the glass transition temperature. The borate structural variations along with the presence of Dy2O3 decrease both the UV transmission and the optical energy gap, increase the refractive index and created several transitions at different wavelengths.

Keywords

Dy2O3 Borosilicate glasses Elastic moduli DTA – UV-Vis spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author (Prof. Atif Mossad Ali) extend his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/8/38.

References

  1. 1.
    Saddeek Y, Shaaban KHS, Elsaman Reda, El-Taher A, Amer TZ (2018) Attenuation-density anomalous relationship of lead alkali borosilicate glasses. Radiat Phys Chem 150:182–188CrossRefGoogle Scholar
  2. 2.
    Mocioiu OC, Popa M, Neacsu EI, Zaharescu M (2013) Correlation of structural units and chemical stability in SiO2–PbO–Na2O ternary glasses: spectroscopic methods. J Non-Cryst Solids 361:130–141CrossRefGoogle Scholar
  3. 3.
    Kacem IB, Gautron L, Coillot D, Neuville DR (2017) Structure and properties of lead silicate glasses and melts. Chem Geol 461:104–114CrossRefGoogle Scholar
  4. 4.
    Sundara Rao M, Sudarsan V, Brik MG, Bhargavi K, Srinivas Rao Ch, Gandhi Y, Veeraiah N (2013) The de-clustering influence of aluminum ions on the emission features of Nd3+ ions in PbO–SiO2 glasses. Opt Commun 298–299:135– 140CrossRefGoogle Scholar
  5. 5.
    Mythili N, Arulmozhi KT, Sheik Fareed S (2016) A comparative study: on the properties of PbO-SiO2 glass systems synthesized via different routes. Optik 127:10817–10824CrossRefGoogle Scholar
  6. 6.
    Laopaiboon R, Bootjomchai C (2015) Thermoluminescence studies on alkali-silicate glass doped with dysprosium oxide for use in radiation dosimetry measurement. J Lum 158:275– 280CrossRefGoogle Scholar
  7. 7.
    Sundara Rao M, Sanyal B, Bhargavi K, Vijay R, Kityk IV, Veeraiah N (2014) Influence of induced structural changes on thermoluminescence characteristics of g-ray irradiated PbO–Al2O3–SiO2: Dy3+ glasses. J Mol Struct 1073:174–180CrossRefGoogle Scholar
  8. 8.
    Takaishi T, Takahashi M, Jin J, Uchino T, Yoko T, Takahashi M (2005) Structural study on PbO–SiO2 glasses by X-ray and neutron diffraction and 29Si MAS NMR measurements. J Am Ceram Soc 88(6):1591–1596CrossRefGoogle Scholar
  9. 9.
    Wang PW, Zhang L (1996) Structural role of lead in lead silicate glasses derived from XPS spectra. J Non-Cryst Solids 194:129–134CrossRefGoogle Scholar
  10. 10.
    Rao TGVM, Rupesh kumar A, Hanumantha Rao B, Veeraiah N, Rami Reddy M (2012) Optical absorption, ESR, FT-IR spectral studies of iron ions in lead oxyfluoro silicate glasses. J Mol Struct 1021:7–12CrossRefGoogle Scholar
  11. 11.
    Mhareb MHA, Hashim S, Ghoshal SK, Alajerami YSM, Bqoor MJ, Hamdan AI, Saleh MA, Abdul Karim MKB (2016) Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J Lum 177:366–372CrossRefGoogle Scholar
  12. 12.
    Kodama M, Matsushita T, kojima S (1995) Velocity of sound and elastic properties of Li2O-B2O3 glasses. Jpn J Appl Phys 34:2570–2574CrossRefGoogle Scholar
  13. 13.
    Saddeek YB, Abousehly AM, Hussien SI (2007) Synthesis and several features of the Na2O-B2O3-Bi2O3-MoO3 glasses. J Phys D: Appl Phys 40:4674–4681CrossRefGoogle Scholar
  14. 14.
    Shaaban KHS, El-Maaref AA, Abdelawwad M, Saddeek Y, Wilke H, Hillmer H (2018) Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. J Lum 196:477–484CrossRefGoogle Scholar
  15. 15.
    El-Maaref AA, Shaaban Kh S, Abdelawwad M, Saddeek Y (2017) Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Opt Mater 72:169–176CrossRefGoogle Scholar
  16. 16.
    Gaafar M, Marzouk S (2007) Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy. Physica B 338:294– 302CrossRefGoogle Scholar
  17. 17.
    Marzouk M A, Abdelghany AM, ElBatal HA (2018) Gamma irradiation effect on structural and spectral properties of CeO2, Nd2O3, Gd2O3 or Dy2O3 – doped strontium borate glass. Silicon 10:29–37CrossRefGoogle Scholar
  18. 18.
    Marzouk MA, ElBatal HA, Abdelghany AM (2018) Gamma irradiation effect on structural and spectral properties of CeO2, Nd2O3, Gd2O3 or Dy2O3 – doped strontium borate glass. Silicon 10:29–37CrossRefGoogle Scholar
  19. 19.
    Ibrahim AM, Hammad AH, Abdelghany AM, Rabie GO (2018) Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. J Non-Cryst Solids 495:67–74CrossRefGoogle Scholar
  20. 20.
    Abdelghany AM, ElBatal HA, Ramadan RM (2017) The effect of Li2O and LiF on structural properties of cobalt doped borate glasses. J King Saud University - Science 29:510–516CrossRefGoogle Scholar
  21. 21.
    Hamdy Y M, Bahammam S, Abd El All S, Ezz-Eldin F M Spectroscopic properties and luminescence behavior of γ-irradiated Sm3+ doped oxy-fluoride phosphate glasses. Res Phys.  https://doi.org/10.1016/j.rinp.2017.03.007
  22. 22.
    Pisarski WA, Goryczka T, Wodeck B-D (2005) Structure and properties of rare earth doped lead borate glasses. Mat Sci Eng B-Solid 122:94–99CrossRefGoogle Scholar
  23. 23.
    Sundara Rao M, Sanyal B, Bhargavi K, Vijay R , Kityk IV, Veeraiah N (2014) Influence of induced structural changes on thermoluminescence characteristics of γ-ray irradiated PbO–Al2O3–SiO2: Dy3+ glasses. J Mol Struct 1073:174– 180CrossRefGoogle Scholar
  24. 24.
    Rao TGVM, Rupesh Kumar A, Neeraja K, Veeraiah N, Rami Reddy M (2014) Optical and structural investigation of Dy3+–Nd3+ co-doped in magnesium lead borosilicate glasses. Spectrochim Acta Part A 118:744–751CrossRefGoogle Scholar
  25. 25.
    Chanthima N, Tariwong Y, Sareein T, Kaewkhao J, Sangwaranatee NW (2018) Investigation of luminescence properties of Dy3+ doped alkaline earth oxides barium phosphate glasses. Appl Mech Mater 879:27–31CrossRefGoogle Scholar
  26. 26.
    Shaaban KHS, Saddeek Y, Aly K (2018) Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceram Int 44:3862–3867CrossRefGoogle Scholar
  27. 27.
    Barde RV, Nemade KR, Waghuley SA (2016) Complex optical study of V2O5–P2O5–B2O3–Dy2O3 glass systems. J Taibah Univ Sci 10:340–344CrossRefGoogle Scholar
  28. 28.
    Mohammed Al-B FA, Lakshminarayana G, Baki SO, Halimah MK, Kityk IV, Mahdi MA (2017) Structural, thermal, optical and dielectric studies of Dy3+:B2O3-ZnO-PbO-Na2O-CaO glasses for white LEDs application. Opt Mater 73:686–694CrossRefGoogle Scholar
  29. 29.
    Saddeek YB (2004) Structural analysis of alkali borate glasses. Physica B 344:163–175CrossRefGoogle Scholar
  30. 30.
    Inaba S, Oda S, Morinaga K (2003) Heat capacity of oxide glasses at high temperature region. J Non-Cryst Solids 325:258– 266CrossRefGoogle Scholar
  31. 31.
    Saddeek YB, Latif L (2004) Effect of TeO2 on the elastic moduli of sodium borate glasses. Physica B 348:475–484CrossRefGoogle Scholar
  32. 32.
    Abdelghany AM, ElBatal HA, Ramadan RM (2017) The effect of Li2O and LiF on structural properties of cobalt doped borate glasses. J King Saud J Sci 29:510–516CrossRefGoogle Scholar
  33. 33.
    Saddeek YB, Yahia IS, Aly KA, Dobrowolski W (2010) Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions. Solid State Sci 12(8):1426–1434CrossRefGoogle Scholar
  34. 34.
    Marzouk SY, Gaafar MS (2007) Ultrasonic study on some borosilicate glasses doped with different transition metal oxides. Solid State Commun 144:478–483CrossRefGoogle Scholar
  35. 35.
    Saddeek YB (2009) Structural and acoustical studies of lead sodium borate glasses. J Alloy Compd 467:14–21CrossRefGoogle Scholar
  36. 36.
    Saddeek YB, Aly K, Abbady Gh, Afify N, Shaaban KH S, Dahshan A (2016) Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3). J Non-Cryst Solids 454:13–18CrossRefGoogle Scholar
  37. 37.
    Shaaban Kh S, Saddeek YB (2017) Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O Fe2O3) glass system. Silicon 9:785– -793CrossRefGoogle Scholar
  38. 38.
    Varshneya AK (1994) Fundamental of inorganic glasses. Academic, New YorkGoogle Scholar
  39. 39.
    Jha K, Jayasimhadri M (2016) Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses. J Alloys Compd 688:833–840CrossRefGoogle Scholar
  40. 40.
    Saddeek Y, Aly KA, Bashier SA (2010) Optical study of lead borosilicate glasses. Physica B 405:2407–2412CrossRefGoogle Scholar
  41. 41.
    Saddeek YB, Shaaban KS, Ali AM, Alqhtani MM, Alshehri AM, Sayed MA (2018) Elastic, optical and structural features of wide range of CdO- Na2B4O7 glasses. Mater Res Express 5(6): 065204CrossRefGoogle Scholar
  42. 42.
    Kaur G, Pickrell G, Kumar V, Pandey O, Singh K, Arya S (2015) Mechanical, dielectric and optical assessment of glass composites prepared using milling technique. Bull Mater Sci 38(4):1003–1008CrossRefGoogle Scholar
  43. 43.
    Aly KA (2015) Discussion on the interrelationship between structural, optical, electronic and elastic properties of materials. J Alloy Compd 630:178–182CrossRefGoogle Scholar
  44. 44.
    Ami Hazlin MN, Halimah MK, Muhammad FD, Faznny MF (2017) Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion. Physica B 510:38–42CrossRefGoogle Scholar
  45. 45.
    Mott NF, Davis EA (1977) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  46. 46.
    Shaaban Kh S, Saddeek YB, Aly KA, Dahshan A (2018) Synthesis and physical characteristics of new glasses from some environmental wastes. Silicon.  https://doi.org/10.1007/s12633-018-9808-1
  47. 47.
    Abdel Wahab EA, Shaaban Kh S (2018) Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater Res Express 5:025207CrossRefGoogle Scholar
  48. 48.
    Sushama D, Predeep P (2014) Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Int J Appl Phys Math 4:139–143CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAl - Azhar UniversityAssiutEgypt
  2. 2.Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceAl - Azhar UniversityAssiutEgypt
  4. 4.Physics Department, Faculty of Science and Arts KhulaisUniversity of JeddahJeddahSaudi Arabia
  5. 5.Physics Department, Faculty of GirlsKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Physics Department, Faculty of SciencePort Said UniversityPort SaidEgypt
  7. 7.Department of Physics, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations