, Volume 11, Issue 2, pp 1055–1061 | Cite as

Frequency and Voltage Dependence of Interface States and Series Resistance in Ti/Au/p-Si Diodes with 100 μm and 200 μm Diameter Fabricated by Photolithography

  • D. KorucuEmail author
  • S. Duman
Original Paper


Ti/Au/p-Si diodes with the diameters of 100 and 200 μ m were fabricated by photolithographic technique. Capacitance–voltage (C–V) and conductance–voltage (G/w–V) characteristics of these diodes have been investigated by considering the series resistance (Rs) and interface states (Nss) effects. Experimental results show that the value of C and G/w in per area, with D1 (100 μ m) is lower than that of D2 (200 μ m) in depletion region but this behavior become reverse at accumulation region. Such behavior of C and G/w can be attributed to the special distribution of Nss at metal/semiconductor (M/S) interface, series resistance (Rs) of diode. The interface states density of the devices determined from high-low capacitance methods are presented for comparison. The voltage dependent profile of Rs was obtained for 100 kHz and 1 MHz. The observed anomalous peaks in C–V plots at 100 kHz were attributed to the effects of Rs, Nss and native interfacial layer. Experimental result show that the localizations of Nss at Ti/Au/p-Si interface, Rs and native interfacial layer have significant effects on the C–V and G/w–V characteristics of Ti/Au/p-Si diodes.


Ti/Au/p-Si SBDs High-low capacitance methods Interface states Series resistance Voltage dependent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rhoderick EH, Williams RH (1988) Metal semiconductor contacts, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Nicollian EH, Brews JR (1982) MOS physics and technology. Wiley, New YorkGoogle Scholar
  3. 3.
    Singh A (1985) Solid State Electron 28(3):223CrossRefGoogle Scholar
  4. 4.
    Altindal S, Tataroglu A, Dokme I (2005) Sol Energy Mater Sol Cells 85:345CrossRefGoogle Scholar
  5. 5.
    Osvald J, Burian E (1998) Solid State Electron 42(2):191CrossRefGoogle Scholar
  6. 6.
    Cova P, Singh A (1997) J Appl Phys 82(10):5217CrossRefGoogle Scholar
  7. 7.
    Afandiyeva IM, Dokme I, Altindal S, Bulbul MM, Tataroglu A (2008) Mocroelectronic Engineering 85:247CrossRefGoogle Scholar
  8. 8.
    Cova P, Singh A, Medina A, Masut RA (1988) Solid State Electron 42:477CrossRefGoogle Scholar
  9. 9.
    Raychaudhuri B, Chattopadhyay P (1994) Phys Stat Sol 141(1):K71CrossRefGoogle Scholar
  10. 10.
    Korucu D, Turut A, Turan R, Altindal S (2012) Sci China Phys Mech Astron 55:1. CrossRefGoogle Scholar
  11. 11.
    Haddara HS, El-Sayed M (1988) Solid State Electron 31(8): 1289CrossRefGoogle Scholar
  12. 12.
    Altindal S, Karadeniz S, Nuhoglu N, Tataroglu A (2003) Solid State Electron 47(10):1847CrossRefGoogle Scholar
  13. 13.
    Turut A, Yalcin N, Saglam M (1992) Solid State Electron 35(1):835CrossRefGoogle Scholar
  14. 14.
    Depas M, Van Meirhaeghe RL, Lafere WH, Cardon F (1994) Solid State Electron 37(3):433CrossRefGoogle Scholar
  15. 15.
    Wang K, Ye M (2009) Solid-State Electron 53(2):234CrossRefGoogle Scholar
  16. 16.
    Bulbul MM, Altindal S, Parlakturk F, Tataroglu A (2011) Surf Interface Anal 43:1561CrossRefGoogle Scholar
  17. 17.
    Karatas S, Turut A (2010) Microelectron Reliab 50(3):351CrossRefGoogle Scholar
  18. 18.
    Nicollian EH, Goetzberger A (1967) Bell System Tech J 46:1055CrossRefGoogle Scholar
  19. 19.
    Korucu D, Altindal Ş, Mammadov TS, Özcelik S. (2008) Optoelectron Adv Mater-RC 2(9):525Google Scholar
  20. 20.
    Card HC, Rhoderick EH (1971) J Phys D 4:1589CrossRefGoogle Scholar
  21. 21.
    Konofas N, Evangelou EK (2003) Semicond Sci Technol 18:56CrossRefGoogle Scholar
  22. 22.
    Divigalpitiya WMR (1989) Sol Energy Mater 18:253CrossRefGoogle Scholar
  23. 23.
    Castagne R, Vapaille A (1971) Surf Sci 28:157CrossRefGoogle Scholar
  24. 24.
    Hung KK, Cheng YC (1987) J Appl Phys 62:4204CrossRefGoogle Scholar
  25. 25.
    Kelberlan U, Kasing R (1981) Solid State Electron 24:873Google Scholar
  26. 26.
    Nicollian E, Goetzberger A (1966) Bell Syst Tech J 46:513Google Scholar
  27. 27.
    Altindal S, Uslu H (2011) J Appl Phys 109(7):074503CrossRefGoogle Scholar
  28. 28.
    Werner J, Ploog K, Queisser HJ (1986) Phys Rew Lett 57:80Google Scholar
  29. 29.
    Cheung SK, Cheung NW (1986) Apply Phys Lett 49:85CrossRefGoogle Scholar
  30. 30.
    Altindal S, Kanbur H, Yucedag I, Tataroglu A (2008) Microelectron Eng 85(2):1495CrossRefGoogle Scholar
  31. 31.
    Korucu D, Altindal Ş, Mammadov TS, Özçelik S (2009) J Optoelect Res Mat 11(2):192Google Scholar
  32. 32.
    Korucu D, Türüt A, Altındal Ş (2013) Curr Appl Phys 13:1101CrossRefGoogle Scholar
  33. 33.
    Korucu D, Karataş Ş, Türüt A (2013) Indian J Phys.
  34. 34.
    Korucu D, Duman S (2015) Sci Adv Mater 7:1291CrossRefGoogle Scholar
  35. 35.
    Tung RT (1992) Phys Rev B 45:13509CrossRefGoogle Scholar
  36. 36.
    Sullivan JP, Tung RT, Pinto MR, Graham WR (1991) J Appl Phys 70:7403CrossRefGoogle Scholar
  37. 37.
    Song YP, Van Meirhaeghe RL, Laflere WH, Cardon F (1986) Solid State Electron 29:633–638CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.AnkaraTurkey
  2. 2.Department of Basic Sciences, Science FacultyErzurum Technical UniversityErzurumTurkey

Personalised recommendations