Advertisement

Silicon

, Volume 11, Issue 1, pp 563–571 | Cite as

Solar Light Photodetectors Based on Nanocrystalline Zinc Oxide Cadmium Doped/p-Si Heterojunctions

  • Bestoon Anwer Hamad Ameen
  • Abdulkadir Yildiz
  • W. A. Farooq
  • Fahrettin YakuphanogluEmail author
Original Paper

Abstract

The transparent undoped and Cd doped ZnO thin films were deposited on p-type Si substrates to fabricate Cd-ZnO/p-Si diodes. The Cd doped ZnO thin films exhibited a polycrystalline structure. The transmittance measurements indicate that the films have transparency ranging from 47% to 92% for the UV and visible regions. The optical band gap of the films were found to be ranging from 3.27 to 3.19 eV with Cd content. The photoelectrical properties of the diodes under various illuminations were analyzed. The undoped and Cd doped ZnO thin films/p-silicon devices exhibit a photovoltaic behavior with the obtained photovoltaic parameters. The continuous distribution of interface states in the diodes is analyzed by capacitance voltage (C-V) measurements. The diode having 0.1% Cd doped Zno showed the highest photosensitivity in all the diodes with the photoresponsivity of 3.6 x10− 4. We suggest that the fabricated CdZnO based diodes can be used as photodetector in optic and optoelectronic communications.

Keywords

Zinc oxide Cadmium doped photodiode Photoresponse properties Sol-gel Optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Scientific Research Projects Foundation (BAP) of Kahramanmaraş Sütçü Imam University under Grant No. 2017/1-72 D. Also, authors would like to extend their sincere appreciation to the Deanship of Scientific Research at king Saud University for its funding this Research group NO RG-1435-059.

References

  1. 1.
    Deb SK (2005) Dye-sensitized TiO 2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL). Sol Energy Mater Sol Cells 88:1–10CrossRefGoogle Scholar
  2. 2.
    Streimikiene D, Balezentis T, Krisciukaitienė I, Balezentis A (2012) Prioritizing sustainable electricity production technologies: MCDM approach. Renew Sust Energ Rev 16:3302–3311CrossRefGoogle Scholar
  3. 3.
    Tarwal NL, Patil AR, Harale NS, Rajgure AV, Suryavanshi SS, Bae WR, Patil PS, Kim JH, Jang JH (2014) Gas sensing performance of the spray deposited Cd–ZnO thin films. J Alloy Compd 598:282–288CrossRefGoogle Scholar
  4. 4.
    Bae J-S, Jeong Y-E, Park S (2014) Structural-crossover-induced optical band gap variation of Hf-doped ZnO films. Appl Surf Sci 321:98–102CrossRefGoogle Scholar
  5. 5.
    Chuai Y-H, Hu B, Li Y-D, Shen H-Z, Zheng C-T, Wang Y-D (2015) J Alloys Compd 627:299e306.  10.1016/j.jallcom.2014.12.118 CrossRefGoogle Scholar
  6. 6.
    Ferro R, Rodriguez JA, Vigil O, Morales-Acevedo A, Contreras-Puente G (2000) Fdoped CdO thin films deposited by spray pyrolysis. Phys Stat Sol A 177:477CrossRefGoogle Scholar
  7. 7.
    Zhang SB, Wei SH, Zunger A (2001) Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63:075205CrossRefGoogle Scholar
  8. 8.
    Lim JT, Jeong CH, Vozny A, Lee JH, Kim MS, Yeom GY (2007) Surf Coat Technol 201:5358CrossRefGoogle Scholar
  9. 9.
    He Z et al (2009) Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 5:345–350CrossRefGoogle Scholar
  10. 10.
    Yükselici MH, Aşıkoğlu Bozkurt A, Ömür BC (2013) A detailed examination of the growth of CdSe thin films through structural and optical characterization. Mater Res Bull 48:2442– 2449CrossRefGoogle Scholar
  11. 11.
    Pathinettam Padiyan D, Marikani A, Murali KR (2003) Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuumdeposited CdSe thin films. Mater Chem Phys 78:51–58CrossRefGoogle Scholar
  12. 12.
    Erat S, Metin H, Arı M (2008) Influence of the annealing in nitrogen atmosphere on the XRD, EDX, SEM and electrical properties of chemical bath deposited CdSe thin films. Mater Chem Phys 111:114–120CrossRefGoogle Scholar
  13. 13.
    Ghanwat VB et al (2014) Microwave assisted synthesis, characterization and thermoelectric properties of nanocrystalline copper antimony selenide thin films. RSC Adv 4:51632– 51639CrossRefGoogle Scholar
  14. 14.
    Livage J (1992) Solid State Ionics 50:307CrossRefGoogle Scholar
  15. 15.
    Vinod Kumar N, Singh RM, Mehra A, Kapoor LP, Purohit HC (2013) Swart, Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films 539:161– 165CrossRefGoogle Scholar
  16. 16.
    Acharya AD, Moghe S, Panda R, Shrivastava SB, Gangrade M, Shripathi T, Phase DM, Ganesan V (2012) Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films 525:49CrossRefGoogle Scholar
  17. 17.
    Pathak TK, Kumar V, Swart HC, Purohit LP (2015) P-type conductivity in doped and codoped ZnO thin films synthesized by RF magnetron sputtering. J Mod Opt 62(17):1368CrossRefGoogle Scholar
  18. 18.
    Tauc J, Menthe A (1972) States in the gap. J Non-Cryst Solids 8:569–585CrossRefGoogle Scholar
  19. 19.
    Yakuphanoglu F, Ilican S, Caglar M, Caglar Y (2010) Microstructure and electrooptical properties of sol–gel derived Cd-doped ZnO films. Superlattices Microstruct 47:732CrossRefGoogle Scholar
  20. 20.
    Phillips JC (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356CrossRefGoogle Scholar
  21. 21.
    Shah M, Sayyad MH, Karimov KS, Maroof-Tahir M (2010) Physica B 405:1188CrossRefGoogle Scholar
  22. 22.
    Altındal S (2017) J Mater Electron Devices 1:42–47Google Scholar
  23. 23.
    Ilhan M (2017) J Mater Electron Devices 1:15–20Google Scholar
  24. 24.
    Özerli H, Karteri İ, Bekereci A, Karataş Ş (2017) J Mater Electron Devices 1:83–87Google Scholar
  25. 25.
    Card HC, Rhoderick EH (1971) J Phys D Appl Phys 4:1589CrossRefGoogle Scholar
  26. 26.
    Elsayed IA et al (2015) Photoconducting and photocapacitance properties of Al/pCuNiO2-on-p-Si isotype heterojunction photodiode. J Alloys Compd 638:166–171CrossRefGoogle Scholar
  27. 27.
    Lee D-K, Ko H, Cho Y (2015) Single Si submicron wire photodetector fabricated by simple wet etching process. Mater Lett 160:562–565CrossRefGoogle Scholar
  28. 28.
    Soylu M, Cavas M, Al-Ghamdi AA, Gafer ZH, El-Tantawy F, Yakuphanoglu F (2014) Sol Energy Mater Sol Cells 124:180,e185CrossRefGoogle Scholar
  29. 29.
    Kazim S, Alia V, Zulfequar M, Haq MM, Husain M (2007) Phys B 393:310e315CrossRefGoogle Scholar
  30. 30.
    Gupta RK, Al-Turki Y, El-Tantawy F, Yakuphanoglu F, Al-Ghamdi AA (2017) Efficiency enhancement and transient photocapacitance characteristics of the silicon solar cell by graphene oxide. J Mater Electron Devices 1:11–14Google Scholar
  31. 31.
    Gupta RK, Singh RA (2004) Mater Chem Phys 86:279e283CrossRefGoogle Scholar
  32. 32.
    Karatas S, Turut A (2004) Vacuum 74:45CrossRefGoogle Scholar
  33. 33.
    Rhoderick EH, Williams RH (1988) Metal–Semiconductor Contacts, 2nd edn. Clarendon, OxfordGoogle Scholar
  34. 34.
    Hill WA, Coleman CC (1980) Solid State Electron 23:987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bestoon Anwer Hamad Ameen
    • 1
  • Abdulkadir Yildiz
    • 2
  • W. A. Farooq
    • 3
  • Fahrettin Yakuphanoglu
    • 4
    Email author
  1. 1.Department of Bioscience and EngineeringKahramanmaraş Sütçü Imam UniversityKahramanmaraşTurkey
  2. 2.Physics Department, Faculty of Science and ArtsKahramanmaraş Sütçü Imam UniversityKahramanmaraşTurkey
  3. 3.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Faculty of Science and Arts, Department of PhysicsFirat UniversityElazigTurkey

Personalised recommendations