Skip to main content
Log in

Thermal Stability of Single Walled SiGe Nanotube with Vacancy Defects: a Molecular Dynamics Simulation Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The aim of this investigation was to study thermal properties of perfect and imperfect single-walled Si-x%Ge (atomic percentages) armchair nanotubes. We have performed molecular dynamics simulation computations based on Tersoff many body potential in the constant temperature and pressure ensemble. The temperature and pressure of the nanotube were controlled by a Nose-Hoover thermostat and barostat, respectively. The phase diagram of the Si-x%Ge nanotube was built by changing atomic percentages of Ge and then melting the nanotube. Our results show that cohesive energy increases, isobaric heat capacity, and thermal stability of Si-x%Ge nanotube decrease with increasing Ge composition in the nanotube. Moreover, we created 0.5, 1, 1.5, …, 4 at% vacancy defects in the nanotubes to study thermal properties of imperfect Si-Ge nanotubes. Finally, the average of formation energy per defect was calculated as 0.39 eV by MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Nalwa HS (1999) Handbook of nanostructures materials and nanotechnology. CA: Academic, San Diego

    Google Scholar 

  2. Hu J, Yang MQ, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51

    Article  CAS  Google Scholar 

  3. Marsen B, Sattler K (1999) Fullerene-structured nanowires of silicon. Phys Rev B 60:11593

    Article  CAS  Google Scholar 

  4. Menon M, Richter E (1999) Are quasi-one dimensional structures of Si stable. Phys Rev B 83:792–795

    CAS  Google Scholar 

  5. Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410

    Article  CAS  Google Scholar 

  6. Borowiak-Palen E, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhart A, et al (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102

    Article  Google Scholar 

  7. Zhao M, Xia Y, Li F, Zhang RQ, Lee ST (2005) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 71:085312

    Article  Google Scholar 

  8. Davoodi J, Alizade H, Rafii-Tabar H (2012) Molecular dynamics simulation of carbon nanotubes melting transitions. J Comput Theor Nanosci 9:1–5

    Article  Google Scholar 

  9. Larijani MM, Khamse EJ, Davoodi J, Ziaie F, Safa S, Arbabi K, et al (2011) The effect of carbon nanotube concentration on the physical properties of CNT-polycarbonate composites. Optoelectron Adv Mater Rapid Commun 5:252–257

    CAS  Google Scholar 

  10. Barnard AS, Russo SP (2003) Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J Phys Chem B 107:7577–7581

    Article  CAS  Google Scholar 

  11. Schmidt OG, Eberl K (2001) Thin solid films roll up into nanotubes. Nature 410:168

    Article  CAS  Google Scholar 

  12. Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, New York

    Google Scholar 

  13. Allen MP, Tildesly DJ (1996) Computer simulation of liquids. Oxford Science Publications, Oxford

    Google Scholar 

  14. Rathi SJ, Ray AK (2008) On the existence and stability of single walled SiGe nanotubes. Chem Phys Lett 466:79–83

    Article  CAS  Google Scholar 

  15. Liu X, Cheng D, Cao D (2006) The structure, energetics and thermal evolution of SiGe nanotubes. Nanotech 20:315705

    Article  Google Scholar 

  16. Setoodeh AR, Attariani H, Jahanshahi M (2011) Mechanical properties of silicon-germanium nanotubes under tensile and compressive loadings. J Nano Res 15:105–114

    Article  CAS  Google Scholar 

  17. Wei J, Liu HJ, Tan XJ, Cheng L, Zhang J, Fan DD, et al (2014) Theoretical study of the thermoelectric properties of SiGe nanotubes. RSC Adv 4:53037–53043

    Article  CAS  Google Scholar 

  18. Hill TL (1960) Statistical mechanics. McGraw-Hill, New York

    Google Scholar 

  19. Korpiun R., Coufal HJ (1971) Thermodynamic properties of krypton crystals. Phys Stat Sol (A) 6:187–199

    Article  CAS  Google Scholar 

  20. Shocknecht WE, Simmons RO (1971) Thermal expansion. AIP Conf Proc 3:169

    Google Scholar 

  21. Shein IR, Gorbunova MA, Kiiko VS, Ivanovskii AL (2010) The influence of point defects on the electronic and magnetic properties of beryllium monoxide. Adv Mater Sci 26:48–57

    CAS  Google Scholar 

  22. Card DN, Jacobs PWM (1977) Monte carlo calculations on rare-gas crystals. Mol Phys 34(1):1–19

    Article  CAS  Google Scholar 

  23. Wang J, Soh AK, Xiao P, Ke FJ (2010) Molecular-dynamics investigation on polarization retention of barium titanate nanofilm arising from ordered oxygen vacancy. EPL 92:17006

    Article  Google Scholar 

  24. Wang J, Lu C, Wang Q, Xiao F, Ke F, Bai Y, et al (2012) Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology 23:025703

    Article  Google Scholar 

  25. Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56:632–655

    Article  CAS  Google Scholar 

  26. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  CAS  Google Scholar 

  27. Tersoff J (1990) Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 41:3248–3248

    Article  CAS  Google Scholar 

  28. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  29. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(511):511–519

    Article  CAS  Google Scholar 

  30. Sutton AP, Pethica JB, Rafii-Tabar H, Nieminen JA, Pettifor DG, Cottrell AH (eds) (1994) Electron theory in alloy design, vol 19. Institute of Materials, London

  31. Zubov VI, Zubov IV (2006) On the thermal vacancy effects on thermodynamic properties and stability of Van der Waals crystals. Phys Stat Sol (B) 243:2711–2718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Davoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodi, J., Soleymani, M. & Sabet, H.A. Thermal Stability of Single Walled SiGe Nanotube with Vacancy Defects: a Molecular Dynamics Simulation Study. Silicon 10, 731–736 (2018). https://doi.org/10.1007/s12633-016-9524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9524-7

Keywords

Navigation