Advertisement

Silicon

, Volume 10, Issue 6, pp 2915–2925 | Cite as

The Effect of Curing Agents on Basic Properties of Silicone-epoxy Hybrid Resin

  • Predrag Karamanolevski
  • Aleksandra BužarovskaEmail author
  • Gordana Bogoeva-Gaceva
Original Paper
  • 94 Downloads

Abstract

A silicone-epoxy hybrid resin was cured with 3-aminopropyltriethoxysilane (AMEO) and AMEO/3-aminopropyltrimethoxysilane (AMMO) mixture. The effect of resin-to-hardener ratio on cured system properties was investigated. Thermal behavior of the cured resin was analyzed by DSC and TGA analyses. Hardness, adhesion properties, solvent and chemical resistance of the films cured at different resin-to-hardeners ratio, were compared. It was shown that the obtained T g values of the cured resins are similar for both cure systems, however the use of AMMO as a curing agent in a mixture with AMEO can provide significant shortening of the curing time. The solvent and chemical resistance as well as the hardness and adhesion properties of the cured resin samples were excellent. The best results are registered for the system cured with AMEO hardener.

Keywords

Epoxy–silicone hybrid resin Cross-linking Glass transition temperature Thermal stability Chemical resistance Adhesion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brydson JA (1999) Plastic materials, 7th edn. Butterworth-HeinemannGoogle Scholar
  2. 2.
    Dodiuk H, Goodman SH (2014) Handbook of thermoset plastics, 3rd edn. Elsevier IncGoogle Scholar
  3. 3.
    Ellis B (1993) Chemistry and technology of epoxy resins. Springer Science+Business Media DordrechtGoogle Scholar
  4. 4.
    Herman FM (2003) Encyclopedia of polymer science and technology, 3rd edn. WileyGoogle Scholar
  5. 5.
    Levita G, De Petris S, Marchetti A, Lazzeri A (1991) Crosslink density and fracture toughness of epoxy resins. J Mater Sci 26:2348–2352CrossRefGoogle Scholar
  6. 6.
    Delor-Jestin F, Drouin D, Cheval PY, Lacoste J (2006) Thermal and photochemical ageing of epoxy resin - Influence of curing agents. Polym Degrad Stab 91:1247–1255CrossRefGoogle Scholar
  7. 7.
    Chrusciel JJ, Lesniak E (2015) Modification of epoxy resins with functional silanes polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 41:67–121CrossRefGoogle Scholar
  8. 8.
    Kickelbick G (2007) Hybrid Materials-Synthesis Characterization and Applications. Wiley-VCH Verlag GmbHGoogle Scholar
  9. 9.
    Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH Verlag GmbHGoogle Scholar
  10. 10.
    Nazir T, Afzal A, Siddiqi HM, Ahmad Z, Dumon M (2010) Thermally and mechanically superior hybrid epoxy-silica polymer films via sol-gel method. Prog Org Coat 69:100–106CrossRefGoogle Scholar
  11. 11.
    Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanic Prop Macromol 37:9457–9464CrossRefGoogle Scholar
  12. 12.
    Mammeri F, Le Bourhis E, Rozesa L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811CrossRefGoogle Scholar
  13. 13.
    Chattopahyay DK, Webster DC (2009) Hybrid coatings from novel silanemodified glycidyl Arbamate resins and amine crosslinkers. Prog Org Coat 66:73–85CrossRefGoogle Scholar
  14. 14.
    Suleiman R, Dafalla H, El Ali B (2015) Novel hybrid epoxy silicone materials as efficient anticorrosive coatings for mild steel. RSC Adv 5:39155–39167CrossRefGoogle Scholar
  15. 15.
    Li W, Huang D, Xing XY, Tang J, Xing Y, Li X, Zhang J (2014) Study the factors affecting the preformance of organic-inorganic hybrid coatings. J Appl Polym Sci. doi: 10.1002/App.41010
  16. 16.
    Brusciotti F, Snihirova DV, Xue H, Montemor MF, Lamaka SV, Ferreira MGS (2013) Hybrid epoxy-silane coatings for improved corrosion protection of Mg alloy. Corros Sci 67:82–90CrossRefGoogle Scholar
  17. 17.
    Zheng SX, Li JH (2010) Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J Sol-Gel Sci Technol 54:174–187CrossRefGoogle Scholar
  18. 18.
    Afzal A, Siddiqi HM (2011) A comprehensive study of the bicontinuous epoxy-silica hybrid polymers: I. Synthesis, characterization and glass transition. Polymer 52:1345–1355CrossRefGoogle Scholar
  19. 19.
    Matejka L, Strachota A, Plestil J, Whelan P, Steinhart M, Slouf M (2004) Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Struct Morphol Macromol 37:9449–9456Google Scholar
  20. 20.
    Reusmann G (2002) New epoxy-siloxane hybrid binder for high performance coatings. Macromol Symp 187:235–241CrossRefGoogle Scholar
  21. 21.
  22. 22.
    ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. D 3359 - 02 Standard Test Methods for Measuring Adhesion by Tape TestGoogle Scholar
  23. 23.
    Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts. Sensors 10:684–696CrossRefGoogle Scholar
  24. 24.
    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, New YorkGoogle Scholar
  25. 25.
    Gonzales MG, Cabanelas JC, Baselga J (2012) Application of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water uptake. Infrared Spectroscopy-Materials Science, Engineering and Technology. Theophanides Theophile (Ed) InTechGoogle Scholar
  26. 26.
    Matsukawa K, Hasegawa K, Inoue H, Fukuda A, Arita Y (1992) Preparation and curing behavior of siloxane-containing epoxy resin. J Polymer Sci Part A 30:2045–2048CrossRefGoogle Scholar
  27. 27.
    Ahmand S, Gupta AP, Sharmin E, Alam M, Pandey SK (2005) Synthesis characterization and development of high performance siloxane-modified epoxy paints. Prog Org Coat 54:248– 255CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Yang X, Zhao X, Huang W (2012) Synthesis and Properties of optically clear silicone resin/epoxy resin hybrids. Polym Int 61:294–300CrossRefGoogle Scholar
  29. 29.
    Maciejewski H, Dabek I, Fiedorow R, Dutkiewicz M, Majchrzak M (2012) Thermal stability of Hybrid materials based on epoxy functional (poly)siloxanes. J Therm Anal Calorim 110:1415– 1424CrossRefGoogle Scholar
  30. 30.
    Piscitelli F, Buonocore GG, Lavorgna M, Verdolotti L, Pricl S, Gentile G, Mascia L (2015) Peculiarities in the structure - Properties relationship of epoxy-silica hybrids with highly organic siloxane domains. Polymer 63:222–229CrossRefGoogle Scholar
  31. 31.
    Kumar SA, Narayanan TSNS (2002) Thermal properties of siliconized interpenetrating coatings. Prog Org Coat 45:323–330CrossRefGoogle Scholar
  32. 32.
    Hsiue GH, Wang JW, Chang FC (1999) Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins. J Appl Polym Sci 73:1231–1238CrossRefGoogle Scholar
  33. 33.
    Atta AM, Shaker NO, Abdon MI, Abdelfatah M (2006) Synthesis and Characterization of high thermally stable poly(Schiff) epoxy coatings. Prog Org Coat 56:91–99CrossRefGoogle Scholar
  34. 34.
    Mencer HJ, Gomzi Z (1994) Swelling kinetics of polymer-solvent systems, vol 30CrossRefGoogle Scholar
  35. 35.
    ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. D 4541 - 02 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion TestersGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Predrag Karamanolevski
    • 1
  • Aleksandra Bužarovska
    • 2
    Email author
  • Gordana Bogoeva-Gaceva
    • 2
  1. 1.ADING Novoselski Pat, 1409 Street, No. 1SkopjeRepublic of Macedonia
  2. 2.Faculty of Technology and MetallurgySts. Cyril and Methodius UniversitySkopjeRepublic of Macedonia

Personalised recommendations