Advertisement

Silicon

, Volume 10, Issue 2, pp 349–359 | Cite as

Quantification and Reduction of the Residual Chemical Reactivity of Passivated Biodegradable Porous Silicon for Drug Delivery Applications

  • Q. Shabir
  • K. Webb
  • D. K. Nadarassan
  • A. Loni
  • L. T. Canham
  • M. Terracciano
  • L. De Stefano
  • I. Rea
Open Access
Original Paper

Abstract

The chemical reactivity of as-anodized porous silicon is shown to have an adverse effect on a model drug (Lansoprazole) loaded into the pores. The silicon hydride surfaces can cause unwanted reactions with actives during storage or use. Techniques such as thermal oxidation or surface derivitization can lower the reactivity somewhat, by replacing the reactive silicon-hydride species with a more benign oxide or functional group. However, by using a trio of analytical techniques (fluorometric dye assay, HPLC assay, and chemography) we show that residual hydride is still likely to be present and only after combining thermal oxidation with surface derivitization can the residual reactivity be reduced to those values typically observed with sol-gel (porous) silica. Potential sources of residual reactivity are discussed, with reference to data obtained by trace metal analysis, residual solvents, and pH measurements.

Keywords

Porous silicon Reactivity Derivatization Drug delivery 

References

  1. 1.
    Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham LT (2007) Mesoporous silicon : a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4(2):101–110CrossRefGoogle Scholar
  2. 2.
    Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653CrossRefGoogle Scholar
  3. 3.
    Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv 60(11):1266–1277CrossRefGoogle Scholar
  4. 4.
    Shahbazi MA, Herranz B, Santos HA (2012) Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2(4):296–312CrossRefGoogle Scholar
  5. 5.
    Barnes TJ, Jarvis KL, Prestidge CA (2013) Recent advances in porous silicon technology for drug delivery. Ther Deliv 4(7):811–823CrossRefGoogle Scholar
  6. 6.
    Martín-Palma RJ1, Hernández-Montelongo J, Torres-Costa V, Manso-Silván M, Muñoz-Noval Á (2014) Nanostructured porous silicon-mediated drug delivery. Expert Opin Drug Deliv 11(8):1273–1283CrossRefGoogle Scholar
  7. 7.
    Canham LT (1995) Bioactive silicon fabrication via nanoetching techniques. Adv Mater 7:1033CrossRefGoogle Scholar
  8. 8.
    Park JH, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in-vivo applications. Nat Mater 8(4):331–336CrossRefGoogle Scholar
  9. 9.
    Shabir Q (2014) Biodegradability of porous silicon. In: Canham L (ed) Handbook of Porous Silicon. Springer, Switzerland, pp 235–236Google Scholar
  10. 10.
    Khokhlov A, Valiullin R. (2014) Mesoporous silicon. In: Canham L (ed) Handbook of Porous Silicon. Springer, Switzerland, pp 123–145Google Scholar
  11. 11.
    Wan Y, Apostolou S, Dronov R, Kuss B, Voelcker NH (2014) Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine 9(15):2309–2321CrossRefGoogle Scholar
  12. 12.
    Sailor MJ (2014) Chemical reactivity and surface chemistry of porous silicon. In: Canham L (ed) Handbook of Porous Silicon. Springer, Switzerland, pp 355–380Google Scholar
  13. 13.
    De Stefano L, Oliviero G, Amato J, Borbone N, Piccialli G, Mayol l, Rendina I, Terracciano M, Rea I (2013) Aminosilane functionalization of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J Royal Soc Interface 10:20130160CrossRefGoogle Scholar
  14. 14.
    Nadarassan D K, Loni A, Shabir Q, Kelly C, O’Brien H, Caffull E, Webb K, Canham L T, Maniruzamman M, Trivedi V, Douroumis D (2015) Ultrahigh drug loading and release from biodegradable porous silicon aerocrystals. Extended Abstract No. 825 42 nd Meeting of Controlled Release Society. 26-29 th July Edinburgh, UKGoogle Scholar
  15. 15.
    Estey T, Kang J, Schwendeman SP, Carpenter JF (2006) BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J Pharm Sci 95(7):1626–1639CrossRefGoogle Scholar
  16. 16.
    Agrawali CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PLGA implants. J Biomed Mater Res 38(2):105–114CrossRefGoogle Scholar
  17. 17.
    Kuhlmann J, Bartsch I, Willbold E, Schuchardt S, Holz O, Hort N, Höche D, Heineman W R, Witte F (2013) Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater 9(10):8714–8721CrossRefGoogle Scholar
  18. 18.
    Song GL, Song SZ (2006) Corrosion behaviour of pure magnesium in a simulated body fluid. Acta Phys Chim Sin 22(10):122–126Google Scholar
  19. 19.
    Emmanuel B, Thomas E, Annette B, Gabriele L, Helmut L, Heinrich W (2005) Reference values for serum silicon in adults. Anal Biochem 337:130–135CrossRefGoogle Scholar
  20. 20.
    Jay T, Canham LT, Heald K, Reeves CL, Downing R (2000) Autoclaving of porous silicon within a hospital environment: potential benefits and problems. Phys Stat Solidi A 182(1):555–560CrossRefGoogle Scholar
  21. 21.
    Riikonen J, Salomäki M, van Wonderen J, Kemell M, Xu W, Korhonen O, Ritala M, MacMillan F, Salonen J, Lehto V P (2012) Surface chemistry reactivity and pore structure of porous silicon oxidized by various methods. Langmuir 28:10573–10583Google Scholar
  22. 22.
    Koynov S, Pereira RN, Crnolatac I, Kovalev D, Huygens A, Chirnovy V, Stuzmann M, de Witte P (2011) Purification of nano-porous silicon for biomedical applications. Adv Engn Mater 13(6):B225–B233Google Scholar
  23. 23.
    Loni A (2014) Porous silicon formation by anodization. In: Canham L (ed) Handbook of Porous Silicon. Springer, Switzerland, pp 11–22Google Scholar
  24. 24.
    Terracciano M, Rea I, De Stefano L, Rendina I, Oliviero G, Nici FD, Errico S, Piccialli G, Borbone N (2014) Synthesis of mixed sequence oligonucleotides on mesoporous silicon: chemical strategies and material stability. Nanoscale Res Lett 9:317CrossRefGoogle Scholar
  25. 25.
    Krishnamohan T, Ialitha G, Sharma RV, Sambasivarao L, Babu JM, Younus M, Raju AS, Murthy YLN (2012) Method development and validation for estimation of related compounds present in lansoprazole bulk drug by ultra high pressure liquid chromatography. Asian J Res Chem 5(7):859–865Google Scholar
  26. 26.
    O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426CrossRefGoogle Scholar
  27. 27.
    Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27:4538–4546CrossRefGoogle Scholar
  28. 28.
    Canham LT, Saunders SJ, Healey PB, Keir AM, Cox T1 (1994) Rapid chemography of porous silicon undergoing hydrolysis. Adv Mater 6(11):865–868CrossRefGoogle Scholar
  29. 29.
    Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith JD, Raftery D, Canham LT (1999) Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 121(49):11491–11502CrossRefGoogle Scholar
  30. 30.
    Lansoprazole Monograph (2006) United States Pharmacopeia. USP 29 NF24: 1229Google Scholar
  31. 31.
    Vella E, Buscarino G, Boscaino R (2011) Structural organization of silanol and silicon hydride groups in the amorphous silicon dioxide network. Eur Phys J B 83:47–52CrossRefGoogle Scholar
  32. 32.
    Claudio M, Manfred JDL (1969) Reactive Silica II The Nature of the Surface Silicon Hydrides. J Phys Chem 73(2):327–333CrossRefGoogle Scholar
  33. 33.
    Huck LA, Buriak JM (2014) Silicon-carbon bond formation on porous silicon. In: Canham L (ed) Handbook of Porous Silicon. Springer, Switzerland, pp 683–693Google Scholar
  34. 34.
    Boukherroub R, Petit A, Loupy A, Chazalviel JN, Ozanam F (2003) Microwave –assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem 107(48):13459–13462CrossRefGoogle Scholar
  35. 35.
    Loni A, Canham LT (2013) Exothermic phenomena and hazardous gas release during thermal oxidation of mesoporous silicon powders. J Appl Phys 113:173505CrossRefGoogle Scholar
  36. 36.
    Gupta P, Colvin V L (1988) George SM.Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. Phys Rev B 37(14):8234–8243CrossRefGoogle Scholar
  37. 37.
    Stein HJ (1975) Bonding and thermal stability of implanted hydrogen in silicon. J Electronic Mater 4(1):159–174CrossRefGoogle Scholar
  38. 38.
    Wind RA, Jones H, Little MJ (2002) Hines MA Orientation-Resolved Chemical Kinetics: Using Microfabrication to Unravel the Complicated Chemistry of KOH/Si Etching. J Phys Chem B106(7):1557–1569CrossRefGoogle Scholar
  39. 39.
    Mizuhara K, Hsu SM Tribochemical reaction of oxygen and water on silicon surfaces. In: Dowson D (ed) Wear Particles.1992; Elsevier Science Publishers B. V. p 323Google Scholar
  40. 40.
    Muratov VA, Olsen JE, Gallois BM, Fischer TE, Bean JC (1998) Tribochemical Reactions of Silicon: An in Situ Infrared Spectroscopy Characterization. J Electrochem Soc 145(7):2465–2470CrossRefGoogle Scholar
  41. 41.
    Ulin V, Ulin N, Soldatenkov F, Semenov A, Bobyl A (2014) Surface of porous silicon under hydrophilization and hydrolytic degradation. Semiconductors 48(9):1211–1216CrossRefGoogle Scholar
  42. 42.
    Lampert I, Fußstetter H, Jacob H (1989) Evidence for SiH4 Formation during the Reaction of Water with a Silicon Surface. J Electrochem Soc 133(7):1472–1474CrossRefGoogle Scholar
  43. 43.
    Salonen J, Lehto VP, Laine E (1997) The room temperature oxidation of porous silicon. Appl Surf Sci, 191–198Google Scholar
  44. 44.
    Gunasingham PV, Goldspink G (2000) An investigation into silane evolution from porous silicon by temperature programmed desorption method. J Porous Mater 7:187–190CrossRefGoogle Scholar
  45. 45.
    Iler RK (1979) The Chemistry of Silica: solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New YorkGoogle Scholar
  46. 46.
    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25CrossRefGoogle Scholar
  47. 47.
    Rodríguez-Castellóna E, Jiménez-Lópeza A, Maireles-Torresa P, Jonesb PD, Rozièreb J, Trombettac M, Buscac G, Lenardad M, Storarod L (2003) Textural and structural properties and surface acidity characterisation of mesoporous silica-zirconia molecular sieves. J Solid State Chem 175:159–169CrossRefGoogle Scholar
  48. 48.
    Santos H (ed.) (2014) Biomedical Applications of Porous Silicon, Woodhead PublishingGoogle Scholar
  49. 49.
    Low SP, Voelcker NH Biocompatibility of porous silicon. In: Canham L (ed) Handbook of Porous Silicon, pp 381–393Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.pSiMedica Ltd, Malvern Hills Science ParkWorcesterUK
  2. 2.Institute for Microelectronics and MicrosystemsNational Research CouncilNaplesItaly
  3. 3.Department of PharmacyUniversity of Naples Federico IINaplesItaly

Personalised recommendations