Advertisement

Silicon

, Volume 10, Issue 2, pp 287–292 | Cite as

Static and Dynamic Mechanical Properties of Poly (vinyl chloride) and Waste Rice Husk Ash Composites Compatibilized with γ-aminopropyltrimethoxysilane

  • Nawadon PetchwattanaEmail author
  • Jakkid Sanetuntikul
Original Paper

Abstract

In this paper, γ-aminopropyltrimethoxysilane treated poly(vinyl chloride) (PVC)/rice husk ash (RHA) composites were successfully prepared by a reactive extrusion process. Experimental results revealed that both the tensile modulus and tensile strength increased at all silane coupling agent concentrations. The composites with 1 wt% silane exhibited the highest impact strength with 44 % increment. For the untreated composites, poor interfacial adhesion between PVC and RHA was clearly observed. Below the glass transition temperature (Tg), the silane induced higher storage modulus (E ) but it seemed to be independent of E above Tg. Total water absorption at 90 days reduced by 38 % when the silane was added at 1 wt%, which confirmed that some voids were eliminated.

Keywords

Polymer composites Dynamic mechanical properties Silane coupling agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boopalan M, Umapathy MJ, Jenyfer P (2012) Silicon 4:145CrossRefGoogle Scholar
  2. 2.
    Petchwattana N, Covavisaruch S (2013) J Polym Res 20:172CrossRefGoogle Scholar
  3. 3.
    Wang H, Chang R, Sheng KC, Adl M, Qian XQ (2008) J Bionic Eng 5:28CrossRefGoogle Scholar
  4. 4.
    Petchwattana N, Covavisaruch S, Chanakul S (2012) J Polym Res 19:9921CrossRefGoogle Scholar
  5. 5.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Compos Part A-Appl S 41:806CrossRefGoogle Scholar
  6. 6.
    Sombatsompop N, Chaochanchaikul K (2005) J Appl Polym Sci 96:213CrossRefGoogle Scholar
  7. 7.
    Sae-Oui P, Rakdee C, Thanmathorn P (2002) J Appl Polym Sci 83:2485CrossRefGoogle Scholar
  8. 8.
    Ismail H, Mega L, Abdul Khalil HPS (2001) Polym Int 50:660Google Scholar
  9. 9.
    Fuada MYA, Jamaludina M, Ishak ZAM, Omar AKM (1993) Int J Polym Mater 19:1CrossRefGoogle Scholar
  10. 10.
    Chaudhary DS, Jollands MC, Cser F (2004) Adv Polym Tech 23:147CrossRefGoogle Scholar
  11. 11.
    Song YM, Wang QW, Han GP, Wang HG, Gao HJ (2010) J Forest Res 21:373CrossRefGoogle Scholar
  12. 12.
    Bengtsson M, Oksman K (2006) Compos Sci Technol 66:2177CrossRefGoogle Scholar
  13. 13.
    Bengtsson M, Stark NM, Oksman K (2007) Compos Sci Technol 67:2728CrossRefGoogle Scholar
  14. 14.
    Rowell RM (2006) Wood Mater Sci Eng 1:29CrossRefGoogle Scholar
  15. 15.
    Petchwattana N, Covavisaruch S, Khanawang K (2013) Adv Mater Res 602-604:802CrossRefGoogle Scholar
  16. 16.
    Abdelmouleh M, Boufi S, Belgacem MN (2007) Compos Sci Technol 67:1627CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Wang K, Zhu F, Xue P, Jia M (2006) Polym Degrad Stabil 91:2874CrossRefGoogle Scholar
  18. 18.
    Fuad MYA, Iamail Z, Ishak ZAM, Omar AKM (1995) Eur Polym J 31:885CrossRefGoogle Scholar
  19. 19.
    Sun S, Li C, Zhang L, Du HL, Burnell-Gray JS (2006) Eur Polym J 42:1643CrossRefGoogle Scholar
  20. 20.
    Jiang H, Kamdem DP (2004) J Vinyl Addit Techn 10:59CrossRefGoogle Scholar
  21. 21.
    Chua PS (1987) Polym Comp 8:308CrossRefGoogle Scholar
  22. 22.
    Pothan LA, Oommen Z, Thomas S (2003) Compos Sci Technol 63:283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityWattanaThailand
  2. 2.Faculty of Engineering and TechnologyKing Monkut’s University of Technology North BangkokBankhaiThailand

Personalised recommendations