Silicon

, Volume 9, Issue 3, pp 411–419 | Cite as

Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte

Original Paper

Abstract

A composition of NASICON (Na3Zr2Si2PO12) was synthesized by the solid-state reaction method using a new compound Na2HPO42H2O. The X-ray diffraction patterns of all samples exhibit monoclinic Na3Zr2Si2PO12 as a major phase with a very small amount of monoclinic-ZrO2. The maximum relative density (97 %) and maximum conductivity is obtained in the samples sintered at 1200 °C (N3) which is slightly higher than β-Al2O3. The activation energy is ∼ 0.20 eV for the N3 sample which is lower than for β-Al2O3. The dilatometeric study and Arrhenius plots confirmed a phase transition of NASICON from monoclinic to rhombohedral. The micro-structural study of the samples done by scanning electron microscopy (SEM) indicated a significant influence of the processing conditions on the microstructures. Raman spectroscopy demonstrated that the sample N3 exhibits minor structural changes compared to other samples.

Keywords

Na3Zr2Si2PO12 Electrical conductivity Microstructure Solid electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kida T, Morinaga N, Kishi S, An K M, Sim K W, Chae B Y, Kim J K, Ryu B K, Shimanoe K (2011) J Electrochem Acta 22:7484–7490CrossRefGoogle Scholar
  2. 2.
    Zhang H, Zhong T, Sun R, Liang X, Lu G (2014) RSC Adv 4:55334–55340CrossRefGoogle Scholar
  3. 3.
    Alpen U V, Bell M F, Wichelhaus W (1979) Mat Res Bull 14:1317–1322CrossRefGoogle Scholar
  4. 4.
    McEntire BJ, Miller GR, Gordon RS (1979) Proceedings Fifth International Conference, “Sintering and Related Phenomena”, (Notre Dame Indiana)p 18Google Scholar
  5. 5.
    Anantharamulu N, Velchuri R, Sarojini T, Madhavi K, Prasad G, Vithal M (2009) Ind J Eng Mat Sci 16:347–354Google Scholar
  6. 6.
    Palomares V, Serras P, Villaluenga I, Hueso B K, Gonz J C, Rojo T (2012) Energy Environ Sci 5:5884–5901CrossRefGoogle Scholar
  7. 7.
    Horwat D, Pierson J F, Billard A (2007) Surf Coat Tech 201:7060–7065CrossRefGoogle Scholar
  8. 8.
    Perthuis H, Colomban Ph (2012) Ceram Int 12:39–52CrossRefGoogle Scholar
  9. 9.
    Yadav P, Bhatnagar MC (2012) Ceram Int 38:1731–1735CrossRefGoogle Scholar
  10. 10.
    Essoumhi A, Favotto C, Mansori M, Satre P (2004) J Solid State Chem 177:4475–4481CrossRefGoogle Scholar
  11. 11.
    Dang HY, Guo XM, Huang YP, Rong JQ (2012) Int J Miner Meta Mat 19:768–773CrossRefGoogle Scholar
  12. 12.
    Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR (2012) Energy Environ Sci 5:8572–8583CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Wang W, Jiang B, Hua L, Jiao S (2014) J Mater Chem A 2:1341–1345CrossRefGoogle Scholar
  15. 15.
    Paściak G, Mielcarek W, Prociów K, Warycha J (2014) Ceram Int 40:12783–12787CrossRefGoogle Scholar
  16. 16.
    Frank K, Kohler H, Guth U (2008). Ionics 14:363–369CrossRefGoogle Scholar
  17. 17.
    Obata K, Matsushima S (2010) J Ceram Soc Japan 118:213–216CrossRefGoogle Scholar
  18. 18.
    Fuentes RO, Lamas DG, Fernandez de Rapp ME, Figueiredo FM, Frade JR, Marques FMB, Franco JI (2004) Bull Spanish Soc Ceram Glass 43:775–779Google Scholar
  19. 19.
    Gordon RS, Miller GR, Mcentire BJ, Beck ED, Rasmussen JR (1981) Solid State Ionics 3 (/4):243–248CrossRefGoogle Scholar
  20. 20.
    Boilot JP, Salanie JP, Desplanches G, Potier DL (1979) Mat Res Bull 14:1469–1477CrossRefGoogle Scholar
  21. 21.
    Bayard ML, Barna GG (1978) J Electroanal Chem 91:201–209CrossRefGoogle Scholar
  22. 22.
    Fuentes RO, Figueiredo FM, Marques FMB, Franco JI (2001) J Euro Ceram Soc 21:737–743CrossRefGoogle Scholar
  23. 23.
    Ignaszak A, Pasierb P, Gajerski R, Komornicki S (2006) Mat Sci Poland 24:95–102Google Scholar
  24. 24.
    Fuentes RO, Figueiredo FM, Marques FMB, Franco JI (2001) Solid State Ionics 140:173–179CrossRefGoogle Scholar
  25. 25.
    Takahashi T, Kuwabare K, Shibata M (1980) Solid State Ionics 1:163–175CrossRefGoogle Scholar
  26. 26.
    Mali A, Petric A (2012) J Euro Ceram Soc 32:1229–1234CrossRefGoogle Scholar
  27. 27.
    Traversa E, Aono H, Sadaoka Y, Montanaro L (2000) J Electroceram 3:261–272CrossRefGoogle Scholar
  28. 28.
    Materials Handbook (2008) A Concise Desktop Reference, 2 nd edition by Cardarelli F, Materials & Electrochemical Research (Corporation Tucson, London Ltd):1340Google Scholar
  29. 29.
    Chris K, Dyer K, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (2009) Encyclopedia of Electrochemical Power Sources. Elsevier, p 4538Google Scholar
  30. 30.
    Kang HB, Cho NH (1999) J Mat Sci 34:5005–5013CrossRefGoogle Scholar
  31. 31.
    Hooper A (1980) J Electroanal Chem 109:161–166CrossRefGoogle Scholar
  32. 32.
    Bohnke O, Ronchetti S, Mazza D (1999) Solid State Ionics 122:127–136CrossRefGoogle Scholar
  33. 33.
    Hooper A (1977) J Phys D Appl Phys 10:1487–1496CrossRefGoogle Scholar
  34. 34.
    Hudgens JJ, Brow RK, Tallant DR, Martin SW (1998) J Non Cryst Solids 223:21–31CrossRefGoogle Scholar
  35. 35.
    Syed KM, Pang SF, Zhang Y, Zhang YH (2013) J Chem Phy 138:024901CrossRefGoogle Scholar
  36. 36.
    Palanivel R, Velraj G (2007) Indian J Pure Appl Phys 45:501–508Google Scholar
  37. 37.
    Marzouk MA, Ouis MA, Hamdy YM (2012) Silicon 4:221–227CrossRefGoogle Scholar
  38. 38.
    McMillan P (1984) Am Mineral 69:622–644Google Scholar
  39. 39.
    Caster AG, Kowarik S, Schwartzberg AM, Nicolet O, Lim SH, Leone SR (2009) J Raman Spectrosc 40:770–774CrossRefGoogle Scholar
  40. 40.
    Stelling J, Behrens H, Wilke M, Gottlicher J, Aljanabi EC (2011) Geochim Cosmochim Acta 75:3542–3557CrossRefGoogle Scholar
  41. 41.
    Andrade JS, Pinheiro AG, Vasconcelos IF, Sasaki JM (1999) J Phys Conden Matter 11:4451–4460CrossRefGoogle Scholar
  42. 42.
    El-Batal FH, Khalil EM, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Silicon 2:41–47CrossRefGoogle Scholar
  43. 43.
    Marzouk MA, ElBatal HA, ElDin FME (2013) Silicon 5:283–295CrossRefGoogle Scholar
  44. 44.
    Rao GV, Shashikala HD (2014) J Adv Ceram 3:109–116CrossRefGoogle Scholar
  45. 45.
    Chahine A, Ettabirou M, Pascal JL (2004) Mater Lett 58:2776–2778CrossRefGoogle Scholar
  46. 46.
    Fang X, Ray CS, Milkankovic AM, Day DE (2001) J Non Cryst Solids 283:162–172CrossRefGoogle Scholar
  47. 47.
    Froehlich E, Mandeville JS, Weinert CM, Kreplak L, Riahi HAT (2011) Biomacromolecules 12:511–517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations