Advertisement

Silicon

pp 1–5 | Cite as

Initial Studies on Cucumber Transcriptome Analysis under Silicon Treatment

  • Sabine HolzEmail author
  • Michael Kube
  • Grzegorz Bartoszewski
  • Bruno Huettel
  • Carmen Büttner
Original Paper

Abstract

This study provides first results of transcriptome data for Cucumis sativus under sodium silicate (Si) supplementation, in order to identify differentially expressed genes (DEGs). In vitro-generated clonal C. sativus line B10 material, derived from leaf microexplants, was established and the plants were cultivated in Murashige and Skoog medium, non-supplemented and Si-supplemented with Na2(SiO2) x xH2O, respectively. The mRNA enrichment of pooled leaf and stem material from both the control and sodium Si-supplemented plants was performed, followed by RNA-Seq. Analysis of the cucumber transcriptome of the control and the Si-treated plants allowed for the determination of 18,957 and 18,882 transcripts referring to 19,896 genes. In total, 1,136 DEGs were determined and 522 (46 %) were assigned to biological processes, in most instances related to primary metabolism (photosynthesis, transport, biosynthesis), thereby supporting previous reports about the impact of Si on plant development, while some transcripts belong to secondary metabolism enabling subsequent analyses including stresses. Some transcripts were slightly up- or down-regulated and might be related to NaCl traces, due to the form of Si used in this instance. These transcriptome data provide the first insights into intermediate Si-accumulating cucumber tissue culture under sodium Sitreatment, with prior analyses on abiotic and biotic stresses.

Keywords

Silicic acid Silica Cucumis sativus Tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12633_2015_9335_MOESM1_ESM.docx (15 kb)
(DOCX 14.5 KB)
12633_2015_9335_MOESM2_ESM.png (559 kb)
(PNG 559 KB)
12633_2015_9335_MOESM3_ESM.xls (146 kb)
(XLS 146 KB)
12633_2015_9335_MOESM4_ESM.png (75 kb)
(PNG 74.5 KB)
12633_2015_9335_MOESM5_ESM.xls (26 kb)
(XLS 25.5 KB)

References

  1. 1.
    Sposito G (2008) The chemistry of soils. Oxford University PressGoogle Scholar
  2. 2.
    Epstein E (1999) Annu Rev Plant Biol 50(1):641–664CrossRefGoogle Scholar
  3. 3.
    Epstein E (1994) Proc Natl Acad Sci USA 91(1):11–17CrossRefGoogle Scholar
  4. 4.
    Mitani N, Ma J F (2005) J Exp Bot 56(414):1255–1261CrossRefGoogle Scholar
  5. 5.
    Miyake Y, Takahashi E (1983) Soil Sci Plant Nutr 29(1):71–83CrossRefGoogle Scholar
  6. 6.
    Liang Y, Si J, Römheld V (2005) New Phytol 167(3):797–804CrossRefGoogle Scholar
  7. 7.
    Nikolic M, Nikolic N, Liang Y, Kirkby E A, Römheld V (2007) Plant Physiol 143(1):495–503CrossRefGoogle Scholar
  8. 8.
    Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) Nature 448(7150):209–212CrossRefGoogle Scholar
  9. 9.
    Chiba Y, Mitani N, Yamaji N, Ma J F (2009) Plant J 57(5):810–818CrossRefGoogle Scholar
  10. 10.
    Mitani N, Yamaji N, Ma J F (2009) Plant Cell Physiol 50(1):5–12CrossRefGoogle Scholar
  11. 11.
    Mitani-Ueno N, Yamaji N, Ma J F (2011) Plant Signal Behav 6(7):991CrossRefGoogle Scholar
  12. 12.
    Deshmukh R K, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger R R (2013) Plant Mol Biol 83(4–5):303–315CrossRefGoogle Scholar
  13. 13.
    Samuels A, Glass A, Ehret D, Menzies J (1991) Plant Cell Environ 14(5):485–492CrossRefGoogle Scholar
  14. 14.
    Jana S, Jeong B R (2013) Trends Hortic Res 83(4–5):303–315Google Scholar
  15. 15.
    Sivanesan I, Park SW (2014) Front Plant Sci 5Google Scholar
  16. 16.
    Adatia M, Besford R (1986) Ann Bot 58(3):343–351Google Scholar
  17. 17.
    Burza W, Malepszy S (1995) Plant Breeding 114(4):341–345CrossRefGoogle Scholar
  18. 18.
    Wóycicki R, Witkowicz J, Gawronski P, Dabrowska J, Lomsadze A, Pawelkowicz M, Siedlecka E, Yagi K, Plader W, Seroczynska A et al (2011) PLoS One 6(7):e22,728CrossRefGoogle Scholar
  19. 19.
    Murashige T, Skoog F (1962) Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  20. 20.
    Alverson A J, Rice D W, Dickinson S, Barry K, Palmer J D (2011) Plant Cell 23(7):2499–2513CrossRefGoogle Scholar
  21. 21.
    Pląder W, Yukawa Y, Sugiura M, Malepszy S (2007) Cell Mol Biol Lett 12(4):584–594Google Scholar
  22. 22.
    Koressaar T, Remm M (2007) Bioinformatics 23(10):1289– 1291CrossRefGoogle Scholar
  23. 23.
    Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F (2002) Plant Physiol 130(4):2129–2141CrossRefGoogle Scholar
  24. 24.
    Tomita Y, Mizuno T, Díez J, Naito S, Ahlquist P, Ishikawa M (2003) J Virol 77(5):2990–2997CrossRefGoogle Scholar
  25. 25.
    Kolomiets M V, Chen H, Gladon R J, Braun E, Hannapel D J (2000) Plant Physiol 124(3):1121–1130CrossRefGoogle Scholar
  26. 26.
    Ma J, Yamaji N (2008) Cell Mol Life Sci 65(19):3049–3057CrossRefGoogle Scholar
  27. 27.
    Lee Y, Choi D, Kende H (2001) Curr Opin Plant Biol 4(6):527–532CrossRefGoogle Scholar
  28. 28.
    Máthé C, Mosolygó Á, Surányi G, Beke A, Demeter Z, Tóth V R, Beyer D, Mészáros I, Márta M et al (2012) Aquat Bot 97(1):57–63CrossRefGoogle Scholar
  29. 29.
    Fauteux F, Rémus-Borel W, Menzies J G, Bélanger R R (2005) FEMS Microbiol Ecol 249(1):1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sabine Holz
    • 1
    Email author
  • Michael Kube
    • 1
  • Grzegorz Bartoszewski
    • 2
  • Bruno Huettel
    • 3
  • Carmen Büttner
    • 1
  1. 1.Division Phytomedicine, Albrecht Daniel Thaer-InstituteHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Plant Genetics, Breeding and BiotechnologyWarsaw University of Life SciencesWarsawPoland
  3. 3.Max Planck-Genome-Centre CologneCologneGermany

Personalised recommendations