Advertisement

Silicon

pp 1–8 | Cite as

Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting

  • Cecilia Yan Guo
  • Jukka Pekka Matinlinna
  • James Kit-Hon Tsoi
  • Alexander Tin Hong Tang
Original Paper

Abstract

Sandblasting (grit-blasting) is a commonly used surface treatment method for roughening the surface of titanium dental implants. Today, alumina (Al2O3) grits with various sizes are widely used for this purpose, due to their good surface roughening effects. However, sandblasting with Al2O3 grits also introduces impurities to the surface of the Ti implant, which may adversely affect the osseointegration process of the implant. This raises the question as to the use of Al2O3 as the most suitable type of sandblasting grit, considering the contaminations to the titanium implant in addition to roughening effects. This study evaluates Al2O3, a silicon-based (silica, SiO2) glass and Al metal grits in terms of both roughing effects and contamination to the titanium implant surface. Thirty commercially pure grade 2 (CP2) titanium plates were grit-blasted using various grits. Surface roughness average (R a) of all grit-blasted plate was measured. In addition, SEM/EDX analysis was performed to detect the morphology and elements on the titanium specimen surface before and after sandblasting. Results showed that each type of grits has its own advantages and disadvantages. This said, Al2O3 might be the most suitable material among the three tested grit materials for sandblasting a titanium dental implant surface.

Keywords

Titanium dental implant Osseointegration Sandblasting Surface analysis Silica glass Glass powder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo CY, Tang ATH, Matinlinna JP (2012) Insights into surface treatment methods of titanium dental implants. J Adhes Sci Technol 26:189–205CrossRefGoogle Scholar
  2. 2.
    Emsley J (2001) Nature’s Building Blocks: An A–Z Guide to the Elements, pp 451-453. Oxford University PressGoogle Scholar
  3. 3.
    Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefGoogle Scholar
  4. 4.
    Guo CY, Matinlinna JP, Tang ATH (2012) Effects of surface charges on dental implants: past, present, and future. Int J Biomater: Article ID 381535, pp 5Google Scholar
  5. 5.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902CrossRefGoogle Scholar
  6. 6.
    Carlsson L, Röstlund T, Albrektsson B, Albrektsson T (1988) Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 3:21–24Google Scholar
  7. 7.
    Heikkinen TT, Matinlinna JP, Vallittu PK, Lassila LVJ (2009) Dental Zirconia Adhesion with Silicon Compounds Using Some Experimental and Conventional Surface Conditioning Methods. Silicon 1:199–202CrossRefGoogle Scholar
  8. 8.
    Matinlinna JP, Lassila LV (2010) Experimental novel silane system in adhesion promotion between dental resin and pretreated titanium. Part II: Effect of lone-term water storage. Silicon 2:79–85CrossRefGoogle Scholar
  9. 9.
    Matinlinna JP, Lassila LV, Dahl JE (2010) Promotion of adhesion between resin and silica-coated titanium by silane monomers and formic acid catalyst. Silicon 2:87–93CrossRefGoogle Scholar
  10. 10.
    Guo CY, Matinlinna JP, Tang ATH (2012) A novel effect of sandblasting on titanium surface: static charge generation. J Adhes Sci Technol 26:2603–2613CrossRefGoogle Scholar
  11. 11.
    Darvell BW, Samman N, Luk WK, Clark RKF, Tideman H (1995) Contamination of titanium casting by aluminium oxide blasting. J Dent 23:319–322CrossRefGoogle Scholar
  12. 12.
    Placko HE, Mishra S, Weimer JJ, Lucas LC (2000) Surface characterization of titanium-based implant materials. Int J Oral Maxillofac Implants 15:355–363Google Scholar
  13. 13.
    Orsini G, Assenza B, Scarano A, Piatelli M, Piatelli A (2000) Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 15:779–784Google Scholar
  14. 14.
    Saikko V, Calonius O, Keränen J (2001) Effect of counterface roughness on the wear of conventional and crosslinked ultrahigh molecular weight polyethylene studied with a multidirectional motion pin-on-disk device. J Biomed Mater Res 57:506–512CrossRefGoogle Scholar
  15. 15.
    Wennerberg A (1995) The importance of surface roughness for implant incorporation. Int J Mach Tool Manu 38:657– 662CrossRefGoogle Scholar
  16. 16.
    Wennerberg A, Hallgren C, Johansson C, Danelli S (1998) A histomorphometric evaluation of screw implants each prepared with two surface roughnesses. Clin Oral Implants Res 9:11– 19CrossRefGoogle Scholar
  17. 17.
    Hruska AR, Borelli P (1991) Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings. J Prosthet Dent 66: 561–565CrossRefGoogle Scholar
  18. 18.
    Clarson SJ (2003) Silicones and silicone-modified materials: A concise overview. ACS Symp Ser 838:1–11Google Scholar
  19. 19.
    Zhang M, Matinlinna JP (2012) E-glass fiber reinforced composites in dental use. Silicon 4:73–78CrossRefGoogle Scholar
  20. 20.
    So YC, Matinlinna JP, Tsoi JKH (2012) A new approach to cure and reinforce acrylic. Silicon 4:209–220CrossRefGoogle Scholar
  21. 21.
    Lung CYK, Matinlinna JP (2010) Resin bonding to silicatized zirconia with two isocyanatosilanes and cross-linking silane. Part I: Experimental. Silicon 2:153–161CrossRefGoogle Scholar
  22. 22.
    Gough JE, Clupper DC, Hench LL (2004) Osteoblast responses to tape-cast and sintered bioactive glass ceramics. J Biomed Mater Res 69A:621–628CrossRefGoogle Scholar
  23. 23.
    Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomater 25:2039–2046CrossRefGoogle Scholar
  24. 24.
    Thian ES, Huang J, Vickers ME, Best SM, Barber ZH, Bonfield W (2006) Silicon-substituted hydroxyapatite (SiHA): A novel calcium phosphate coating for biomedical applications. J Mater Sci 41:709–717CrossRefGoogle Scholar
  25. 25.
    Schulte W (1984) Intraosseous Al2O3 (Frialit) Tübingen implant. Development status after eight years. Quintessence Int 15:l– 39Google Scholar
  26. 26.
    Quayle AA, Cawood J, Howell RA, Eldridge DJ, Smith GA (1989) The immediate or delayed replacement of teeth by permucosal intraosseous implants: the Tübingen implant system. Part I, implant design, rationale for use and preoperative assessment. Br Dent J 166:365–370CrossRefGoogle Scholar
  27. 27.
    Alfrey AC (1984) Aluminium intoxication. N Engl J Med 310:1113–1115CrossRefGoogle Scholar
  28. 28.
    Drummond JL (1983) Degradation of ceramic materials in physiological media. In: Rubin LR (ed) Biomatetials in Reconstructive Surgery. St Louis, Mosby, pp 273–280Google Scholar
  29. 29.
    Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behavior of commercially pure titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials 24:263–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cecilia Yan Guo
    • 1
  • Jukka Pekka Matinlinna
    • 1
  • James Kit-Hon Tsoi
    • 1
  • Alexander Tin Hong Tang
    • 1
  1. 1.Dental Materials Science, Faculty of DentistryThe University of Hong KongSai Ying PunPeople’s Republic of China

Personalised recommendations