Silicon

, Volume 7, Issue 2, pp 191–200 | Cite as

Novel Cross-Linked Luminescent Silicone Composites Based on Reactive Nanostructured Organosilicon Luminophores

  • M. S. Skorotetcky
  • O. V. Borshchev
  • N. M. Surin
  • I. B. Meshkov
  • A. M. Muzafarov
  • S. A. Ponomarenko
Original Paper

Abstract

New functional silyl hydride and vinyl containing methylphenylsiloxane oligomers were synthesized by a polycondensation reaction in the active medium being the solvent, the catalyst and the reactant simultaneously. Hydrosilylation of them in the presence of 0.1 - 3 wt. % of novel reactive nanostructured organosilicon luminophores (NOLs) containing different central luminescent and 2,2’-bithienyl peripheral light harvesting fragments with terminal undecylenic groups led to crosslinked silicone composites with valuable luminescence in different regions of the visible spectrum (blue, yellow or red). Investigation of their optical properties revealed that their absorption and luminescence spectra correspond to those of the diluted solutions of the reactive NOLs used. These findings indicate the absence of any aggregation of NOLs in the crosslinked silicon composites confirming their excellent optical quality. High thermal stability of the reactive NOLs (up to 370 C in argon) and the silicones themselves indicate their great potential for creation of highly efficient thermo and radiation resistant plastic scintillators.

Keywords

Methylphenylsiloxane oligomers Nanostructured organosilicon luminophores Active medium Hydrosilylation Luminescent silicone composites Scintillators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahimi A, Mashak A (2013) Plastics, Rubber and Composites 42:223–230CrossRefGoogle Scholar
  2. 2.
    Adler M, Bieringer R, Schauber T, Günther J (2013). In: Someya T (ed) Stretchable Electronics. Wiley, GermanyGoogle Scholar
  3. 3.
    Bowen M, Majewski S, Pettey D, Walker J, Wojcik R, Zorn C (1989) IEEE Trans Nucl Sci 36:562–566CrossRefGoogle Scholar
  4. 4.
    Quaranta A, Carturan S, Cinausero M, Marchi T, Gramegna F, Degerlier M, Cemmi A, Baccaro S (2013) Mater Chem Phys 137:951–958CrossRefGoogle Scholar
  5. 5.
    Feygelman VM, Walker J, Harmon JP (1990) Nuclear Instruments and Methods in Physics Research Section A 290:131–135CrossRefGoogle Scholar
  6. 6.
    Majewski S, Bowen M, Zorn C, Johnson K, Hagopian V, Thomaston J, Wahl H (1989) Nuclear Instruments and Methods in Physics Research Section A 281:500–507CrossRefGoogle Scholar
  7. 7.
    Bell ZW, Brown GM, Ho HC, Sloop FV (2003) X-Ray and Gamma-Ray Detectors and Applications IV 4784:150Google Scholar
  8. 8.
    Bell ZW, Miller MA, Maya L, Brown GM, Sloop FV (2004) IEEE Trans Nucl Sci 51:1773–1776CrossRefGoogle Scholar
  9. 9.
    Walker JK, Katritzky A, Dega-Szafran Z (1989) Chem Scripta 29:245–247Google Scholar
  10. 10.
    Ponomarenko SA, Surin NM, Borshchev OV, Luponosov YN, Akimov DY, Alexandrov IS, Burenkov AA, Kovalenko AG, Stekhanov VN, Kleymyuk EA, Gritsenko OT, Cherkaev GV, Kechek’yan AS, Serenko OA, Muzafarov AM (2014) Sci Rep 4:6549CrossRefGoogle Scholar
  11. 11.
    Luponosov YN, Ponomarenko SA, Surin NM, Borshchev OV, Shumilkina EA, Muzafarov AM (2009) Chem Mater 21:447–455CrossRefGoogle Scholar
  12. 12.
    Ponomarenko SA, Borshchev OV, Luponosov YN, Surin NM, Muzafarov AM (2013) Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo. NSTI-Nanotech 1:756–759Google Scholar
  13. 13.
    Ponomarenko SA, Borshchev OV, Meyer-Friedrichsen T, Pleshkova AP, Setayesh S, Edsger Smits CP, Simon Mathijssen GJ, de Leeuw DM, Kirchmeyer S, Muzafarov AM (2010) Organometallics 29:4213–4226CrossRefGoogle Scholar
  14. 14.
    Borshchev OV, Ponomarenko SA, Surin NM, Kaptyug MM, Buzin MI, Pleshkova AP, Demchenko NV, Myakushev VD, Muzafarov AM (2007) Organometallics 26:5165–5173CrossRefGoogle Scholar
  15. 15.
    Muzafarov AM, Tebeneva NA, Mjakushev VD, Vasilenko NG, Parshina EV, Meshkov IB, Nisiguti S, Jaginuma D, Kamata K (2010) Functional polyorganosiloxanes and curable composition based on said Polyorganosiloxanes. Patent RU 2401846Google Scholar
  16. 16.
    Egorova EV, Vasilenko NG, Demchenko NV, Tatarinova EA, Muzafarov AM (2009) Dokl Chem 424:15–18CrossRefGoogle Scholar
  17. 17.
    Muzafarov AM, Bystrova AV, Vasilenko NG, Ignat’eva GM (2013) Russ Chem Rev 82:635–647CrossRefGoogle Scholar
  18. 18.
    Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Phys Chem Chem Phys 11:9850–9860CrossRefGoogle Scholar
  19. 19.
    D’Alessandro M, Amadei A, Daidone I, Po’ R, Alessi A, Aschi M (2013) J Phys Chem C 117:378513797Google Scholar
  20. 20.
    Botta C, Betti P, Pasini M (2013) J Mater Chem A 1:510–514CrossRefGoogle Scholar
  21. 21.
    Kong JA, Lim E, Lee KK, Lee S, Kim SH (2010) Sol Energy Mater Sol Cells 94:2057–2063CrossRefGoogle Scholar
  22. 22.
    Lim E, Lee S, Lee KK, Kang IN, Moon SJ, Kong HY, Katz HE (2012) Sol Energy Mater Sol Cells 107:165–174CrossRefGoogle Scholar
  23. 23.
    Surin NM, Borshchev OV, Luponosov YN, Ponomarenko SA, Muzafarov AM (2010) Russ J Phys Chem A 84:1979–1985CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. S. Skorotetcky
    • 1
  • O. V. Borshchev
    • 1
  • N. M. Surin
    • 1
  • I. B. Meshkov
    • 1
  • A. M. Muzafarov
    • 1
    • 2
  • S. A. Ponomarenko
    • 1
    • 3
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Chemistry DepartmentMoscow State UniversityMoscowRussian Federation

Personalised recommendations