Silicon

, Volume 9, Issue 4, pp 483–488

Study of Porous Silicon Prepared Using Metal-Induced Etching (MIE): a Comparison with Laser-Induced Etching (LIE)

  • Shailendra K. Saxena
  • Vivek Kumar
  • Hari M. Rai
  • Gayatri Sahu
  • Ravikiran Late
  • Kapil Saxena
  • A. K. Shukla
  • Pankaj R. Sagdeo
  • Rajesh Kumar
Original Paper

Abstract

Porous silicon (p-Si), prepared by two routes (metal induced etching (MIE) and laser induced etching (LIE)) have been studied by comparing the observed surface morphologies using SEM. A uniformly distributed smaller (submicron sized) pores are formed when MIE technique is used because the pore formation is driven by uniformly distributed metal (silver in present case) nanoparticles, deposited prior to the porosification step. Whereas in p-Si, prepared by LIE technique, wider pores with some variation in pore size as compared to MIE technique is observed because a laser having gaussian profile of intensity is used for porosification. Uniformly distribute well-aligned Si nanowires are observed in samples prepared by MIE method as seen using cross-sectional SEM imaging. A single photoluminescence (PL) peak at 1.96 eV corresponding to red emission at room temperature is observed which reveals that the Si nanowires, present in p-Si prepared by MIE, show quantum confinement effect. The single PL peak confirms the presence of uniform sized nanowires in MIE samples. These vertically aligned Si nanowires can be used for field emission application.

Keywords

Porous Silicon Silicon nanostructures Laser induced etching Photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12633_2014_9242_MOESM1_ESM.docx (821 kb)
(DOC 820 KB)

References

  1. 1.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048. doi:10.1063/1.103561 CrossRefGoogle Scholar
  2. 2.
    Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338. doi:10.1038/353335a0 CrossRefGoogle Scholar
  3. 3.
    Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82:909–965. doi:10.1063/1.366536 CrossRefGoogle Scholar
  4. 4.
    Maier-Flaig F, Rinck J, Stephan M et al (2013) Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett. doi:10.1021/nl3038689
  5. 5.
    Soref R (2010) Silicon photonics: a review of recent literature. Silicon 2:1–6. doi:10.1007/s12633-010-9034-y CrossRefGoogle Scholar
  6. 6.
    Soref R (2010) Mid-infrared photonics in silicon and germanium. Nat Photon 4:495–497. doi:10.1038/nphoton.2010.171 CrossRefGoogle Scholar
  7. 7.
    Chen R, Li D, Hu H et al (2012) Tailoring optical properties of silicon nanowires by Au nanostructure decorations: enhanced raman scattering and photodetection. J Phys Chem C 116:4416–4422. doi:10.1021/jp210198u CrossRefGoogle Scholar
  8. 8.
    Létant S, Sailor MJ (2000) Detection of HF gas with a porous silicon interferometer. Adv Mater 12:355–359. doi:10.1002/(SICI)1521-4095(200003)12:5<355::AID-ADMA355>3.0.CO;2-H CrossRefGoogle Scholar
  9. 9.
    Lin VS-Y, Motesharei K, Dancil K-PS et al (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843. doi:10.1126/science.278.5339.840 CrossRefGoogle Scholar
  10. 10.
    Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7:1033–1037. doi:10.1002/adma.19950071215 CrossRefGoogle Scholar
  11. 11.
    Wang B, Cancilla JC, Torrecilla JS, Haick H (2014) Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett 14:933–938. doi:10.1021/nl404335p CrossRefGoogle Scholar
  12. 12.
    Flavel BS, Sweetman MJ, Shearer CJ et al (2011) Micropatterned arrays of porous silicon: toward sensory biointerfaces. ACS Appl Mater Interfaces 3:2463–2471. doi:10.1021/am2003526 CrossRefGoogle Scholar
  13. 13.
    Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323. doi:10.1021/nl300206e CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Liu X, Li H et al (2012) Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem Commun 48:5079–5081. doi:10.1039/C2CC31476B CrossRefGoogle Scholar
  15. 15.
    Wei J, Buriak JM, Siuzdak G (1999) Desorption–ionization mass spectrometry on porous silicon. Nature 399:243–246. doi:10.1038/20400 CrossRefGoogle Scholar
  16. 16.
    Li Q, Koo S-M, Edelstein MD et al (2007) Silicon nanowire electromechanical switches for logic device application. Nanotechnology 18:315202. doi:10.1088/0957-4484/18/31/315202 CrossRefGoogle Scholar
  17. 17.
    Wang B, Stelzner T, Dirawi R et al (2012) Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires. ACS Appl Mater Interfaces 4:4251–4258. doi:10.1021/am300961d CrossRefGoogle Scholar
  18. 18.
    Föll H, Christophersen M, Carstensen J, Hasse G (2002) Formation and application of porous silicon. Mater Sci Eng R Rep 39:93–141. doi:10.1016/S0927-796X(02)00090-6 CrossRefGoogle Scholar
  19. 19.
    Korotcenkov G, Cho BK (2010) Silicon porosification: state of the art. Crit Rev Solid State Mater Sci 35:153–260. doi:10.1080/10408436.2010.495446 CrossRefGoogle Scholar
  20. 20.
    Vázsonyi É, Szilágyi E, Petrik P et al (2001) Porous silicon formation by stain etching. Thin Solid Films 388:295–302. doi:10.1016/S0040-6090(00)01816-2 CrossRefGoogle Scholar
  21. 21.
    González-Díaz B, Guerrero-Lemus R, Marrero N et al (2006) Anisotropic textured silicon obtained by stain-etching at low etching rates. J Phys Appl Phys 39:631. doi:10.1088/0022-3727/39/4/006 CrossRefGoogle Scholar
  22. 22.
    Shih S, Jung KH, Hsieh TY et al (1992) Photoluminescence and formation mechanism of chemically etched silicon. Appl Phys Lett 60:1863–1865. doi:10.1063/1.107162 CrossRefGoogle Scholar
  23. 23.
    Astrova EV, Borovinskaya TN, Tkachenko AV et al (2004) Morphology of macro-pores formed by electrochemical etching of p-type Si. J Micromech Microeng 14:1022. doi:10.1088/0960-1317/14/7/024 CrossRefGoogle Scholar
  24. 24.
    Choy CH, Cheah KW (1995) Laser-induced etching of silicon. Appl Phys A 61:45–50. doi:10.1007/BF01538209 CrossRefGoogle Scholar
  25. 25.
    Hadjersi T, Gabouze N, Yamamoto N et al (2004) Photoluminescence from photochemically etched highly resistive silicon. Thin Solid Films 459:249–253. doi:10.1016/j.tsf.2003.12.103 CrossRefGoogle Scholar
  26. 26.
    Yamamoto N, Takai H (1999) Blue luminescence from photochemically etched silicon. Jpn J Appl Phys 38:5706–5709. doi:10.7567/JJAP.38.5706 CrossRefGoogle Scholar
  27. 27.
    Mavi HS, Prusty S, Kumar M et al (2006) Formation of Si and Ge quantum structures by laser-induced etching. Phys Status Solidi - Appl Mater Sci 203:2444–2450. doi:10.1002/pssa.200521027 CrossRefGoogle Scholar
  28. 28.
    Mavi HS, Islam SS, Kumar R, Shukla AK (2006) Spectroscopic investigation of porous GaAs prepared by laser-induced etching. J Non-Cryst Solids 352:2236–2242. doi:10.1016/j.jnoncrysol.2006.02.046 CrossRefGoogle Scholar
  29. 29.
    Kumar R, Mavi HS, Shukla AK (2008) Macro and microsurface morphology reconstructions during laser-induced etching of silicon. Micron 39:287–293. doi:10.1016/j.micron.2007.04.005 CrossRefGoogle Scholar
  30. 30.
    Kang Y, Jorné J (1998) Photoelectrochemical dissolution of N-type silicon. Electrochim Acta 43:2389–2398. doi:10.1016/S0013-4686(97)10150-5 CrossRefGoogle Scholar
  31. 31.
    Juhasz R, Linnros J (2002) Silicon nanofabrication by electron beam lithography and laser-assisted electrochemical size-reduction. Microelectron Eng 61–62:563–568. doi:10.1016/S0167-9317(02)00532-4 CrossRefGoogle Scholar
  32. 32.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574. doi:10.1063/1.1319191 CrossRefGoogle Scholar
  33. 33.
    Huang Z, Geyer N, Werner P et al (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308. doi:10.1002/adma.201001784 CrossRefGoogle Scholar
  34. 34.
    Huang Z, Shimizu T, Senz S et al (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525. doi:10.1021/nl803558n CrossRefGoogle Scholar
  35. 35.
    Huang Z, Zhang X, Reiche M et al (2008) Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett 8:3046–3051. doi:10.1021/nl802324y CrossRefGoogle Scholar
  36. 36.
    Lin L, Guo S, Sun X et al (2010) Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res Lett 5:1822. doi:10.1007/s11671-010-9719-6 CrossRefGoogle Scholar
  37. 37.
    Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta 53:5509–5516. doi:10.1016/j.electacta.2008.03.009 CrossRefGoogle Scholar
  38. 38.
    Zhong X, Qu Y, Lin Y-C, et al. (2011) Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl Mater Interfaces 3:261–270. doi:10.1021/am1009056 CrossRefGoogle Scholar
  39. 39.
    Kumar R, Mavi HS, Shukla AK, Vankar VD (2007) Photoexcited fano interaction in laser-etched silicon nanostructures. J Appl Phys 101:064315. doi:10.1063/1.2713367 CrossRefGoogle Scholar
  40. 40.
    Kumar R, Shukla AK (2009) Quantum interference in the Raman scattering from the silicon nanostructures. Phys Lett A 373:2882–2886. doi:10.1016/j.physleta.2009.06.005 CrossRefGoogle Scholar
  41. 41.
    Kumar R, Mavi HS, Shukla AK (2010) Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films. Silicon 2:25–31. doi:10.1007/s12633-009-9033-z CrossRefGoogle Scholar
  42. 42.
    Shukla AK, Kumar R, Kumar V (2010) Electronic raman scattering in the laser-etched silicon nanostructures. J Appl Phys 107:014306. doi:10.1063/1.3271586 CrossRefGoogle Scholar
  43. 43.
    Wu H-C, Tsai T-Y, Chu F-H et al (2010) Electron field emission properties of nanomaterials on rough silicon rods. J Phys Chem C 114:130–133. doi:10.1021/jp908566q CrossRefGoogle Scholar
  44. 44.
    Collins RT, Fauchet PM, Tischler MA (1997) Porous silicon: from luminescence to LEDs. Phys Today 50:24–31. doi:10.1063/1.881650 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shailendra K. Saxena
    • 1
  • Vivek Kumar
    • 2
  • Hari M. Rai
    • 1
  • Gayatri Sahu
    • 1
  • Ravikiran Late
    • 1
  • Kapil Saxena
    • 3
  • A. K. Shukla
    • 3
  • Pankaj R. Sagdeo
    • 1
    • 4
  • Rajesh Kumar
    • 1
    • 4
  1. 1.Material research laboratory, Discipline of Physics, School of Basic SciencesIndian Institute of Technology IndoreMadhya PradeshIndia
  2. 2.Biophysics and Nanoscience Centre, DEB-CNISMUniversita della TusciaViterboItaly
  3. 3.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  4. 4.Material Science and Engineering GroupIndian Institute of Technology IndoreMadhya PradeshIndia

Personalised recommendations