Advertisement

Silicon

, Volume 7, Issue 2, pp 95–106 | Cite as

Polycondensation of Diethoxydimethylsilane in Active Medium

  • Aleksandra KalininaEmail author
  • Natalia Strizhiver
  • Natalia Vasilenko
  • Nikolay Perov
  • Nina Demchenko
  • Aziz Muzafarov
Original Paper

Abstract

Polycondensation of diethoxydimethylsilane (DEDMS) in an active medium containing an excess of acetic acid was studied. It has been shown that the process selectivity could be well managed only if water was generated in the reaction mixture. We have found that both linear oligomers and cyclosiloxanes could be obtained with high selectivity and 80 % yield at least under conditions of the active medium. Further condensation of the linear oligomers led to the formation of α,ω-dihydroxypolydimethylsiloxanes with the molecular weight ranging from 3500 to 70000 Da. The obtained polydimethylsiloxane samples having hydroxyl end groups correspond to the industrial samples of liquid siloxane rubbers in terms of molecular weight parameters and virtually do not contain any low molecular cyclosiloxane impurities.

Keywords

Polycondensation Diethoxydimethylsilane Active medium Cyclosiloxanes Polydimethylsiloxane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voronkov MG, Yuzhelevski YA (1978) The siloxane bond. Consultants Bureau, New YorkGoogle Scholar
  2. 2.
    NolI W (1968) Chemie und Technologie der Silicone, 2nd edn. Verlag Chemie, WeinheimGoogle Scholar
  3. 3.
    Chen SL, Dong P, Yang GH, Yang JJ (1996) Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind Eng Chem Res 35:4487–4493CrossRefGoogle Scholar
  4. 4.
    Osterholtz FD, Pohl ER (1992) Kinetics of the hydrolysis and condensation of organofunctional alkoxysilane: a review. J Adhes Sci Technol 6:127–149CrossRefGoogle Scholar
  5. 5.
    Oostendorp DJ, Bertrand GL, Stoffer JO (1992) Kinetics and mechanism of the hydrolysis and alcoholysis of alkoxysilanes. J Adhes Sci Technol 6:171–191CrossRefGoogle Scholar
  6. 6.
    Hook J (1996) A 29 Si NMR study of the sol-gel polymerization rates of substituted ethoxysilanes. J Non-Cryst Solids 195:1–15CrossRefGoogle Scholar
  7. 7.
    Jermouni T, Snaihi M, Hovnanian N (1995) Hydrolysis and initial polycondensation of phenylrimethoxysilane and diphenyldimethoxysilane. J Mater Chem 5:1203–1208CrossRefGoogle Scholar
  8. 8.
    Sakka S, Tanaka Y, Kokubo T (1986) Hydrolysis and polycondensation of dimethyldimethoxysilane and methyltriethoxysilane as materials for the sol-gel process. J Non-Cryst Solids 82:24–30CrossRefGoogle Scholar
  9. 9.
    Smith KA (1986) A study of the hydrolysis of methoxysilanes in a two-phase system. J Org Chem 51:3827–3830CrossRefGoogle Scholar
  10. 10.
    Pope EJA, Mackenzie JD (1986) Sol-gel processing of silica. 2. The role of catalyst. J Non-Cryst Solids 87:185–198CrossRefGoogle Scholar
  11. 11.
    Tsai MT (2002) Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid. J Non-Cryst Solids 298:116–130CrossRefGoogle Scholar
  12. 12.
    Karmakar B, De G, Kundu D, Ganguli D (1991) Silica microspheres from the system tetraethyl orthosilicate-acetic acid-water. J Non-Cryst Solids 135:29–36CrossRefGoogle Scholar
  13. 13.
    Karmakar B, De G, Kundu D, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272:119–126CrossRefGoogle Scholar
  14. 14.
    De G, Karmakar B, Ganguli D (2000) Hydrolysis-condensation reaction of TEOS in presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J Mater Chem 10:2289–2293CrossRefGoogle Scholar
  15. 15.
    Hyde JF (1953) Silanol derivatives of the dimethylsubstituted organosilicon compounds. J Am Chem Soc 75:2166–2167CrossRefGoogle Scholar
  16. 16.
    Kantor S W (1953) The hydrolysis of methoxysilanes. Dimethylsilanediol. J Am Chem Soc 75:2712–2714CrossRefGoogle Scholar
  17. 17.
    Matui M (1957) Organosilicon polymers (I). On the polymer of dimethyl-dimethoxysilane. J Sci Res Inst 51:225–232Google Scholar
  18. 18.
    Lasocki Z (1957) Partial hydrolysis of dimethyldimethoxysilane. Roczn Chem 31:837–845Google Scholar
  19. 19.
    Lasocki Z, Kret Z (1958) Bifunctional silicone monomers hydrolysis and condensation. II. Partial hydrolysis of methylethyldimethoxysilane. Roczn Chem 32:657–659Google Scholar
  20. 20.
    Chrzczonowicz S, Lasocki Z (1960) Bifunctional silicone monomers – hydrolysis and condensation. III. Hydrolysis of dialkyl(aryl)dimethoxysilanes. Roczn Chem 34:1662–1674Google Scholar
  21. 21.
    Chrzczonowicz S, Lasocki Z (1961) Bifunctional silicone monomers – hydrolysis and condensation. IV. Hydrolysis of ω, ω’ – dimethoxy(dialkylpolysiloxanes). Roczn Chem 35:127– 133Google Scholar
  22. 22.
    Leznov NS, Sabun LA, Andrianov KA (1959) Polydiethylsiloxane liquids: III. Action of carboxylic acids on diethylethoxysilane. Zh Obshch Khim 29:1508–1515Google Scholar
  23. 23.
    Leznov NS, Sabun LA, Andrianov KA (1959) Polydiethylsiloxane liquids: V. On the mechanism of reaction of diethoxysilane with acetic acid. Zh Obshch Khim 29:1518–1522Google Scholar
  24. 24.
    Sugahara Y, Okada S, Kuroda K, Kato C (1992) 29Si NMR study of hydrolysis and initial polycondensation process of organoalkoxysilanes. I. Dimethyldiethoxysilane. J Non-Cryst Sol 139:25–34CrossRefGoogle Scholar
  25. 25.
    Chiba J, Sugahara Y, Kuroda Chiba K (1994) Novel polysiloxane formation process from dimethyldiethoxysilane in the presence of oxalic acid. J Sol-Gel Sci Technol 2:153–156CrossRefGoogle Scholar
  26. 26.
    Rankin S, McCormick AV (1999) 29Si NMR study of base-catalyzed polymerization of dimethyldiethoxysilane. Magn Reson Chem 37:27–0037CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Dong H, Orozco-Teran R, Mueller D, Reidy R (2003) Investigation of Polymerization and Cyclization of Dimethyldiethoxysilane by 29 Si NMR and FTIR. J Sol-Gel Sci Technol 28:159–165CrossRefGoogle Scholar
  28. 28.
    Ardhyananta H, Kawauchi T, Ismail H, Takeichi T (2009) Effect of pendant group of polysiloxanes on the thermal and mechanical properties of polybenzoxazine hybrids. Polym 50:5959–5969CrossRefGoogle Scholar
  29. 29.
    Bennevault-Celton V, Maciejak O, Desmazieres B, Cheradame H (2010) Condensation of alkoxysilanes in alcoholic media: I. Oligomerization of dimethyldiethoxysilane. Polym Int 59:43–54CrossRefGoogle Scholar
  30. 30.
    Egorova EV, Vasilenko NG, Demchenko NV, Tatarinova EA, Muzafarov AM (2009) Polycondensation of alkoxysilanes in an active medium as a versatile method for the preparation of polyorganosiloxanes. Dokl Chem 424:15–18CrossRefGoogle Scholar
  31. 31.
    Voronina NV, Meshkov IB, Myakushev VD, Demchenko NV, Laptinskaya TV, Muzafarov AM (2008) Inorganic core/organic shell hybrid nanoparticles: synthesis and characterization. Nanotechnol in Russia 3:321–329CrossRefGoogle Scholar
  32. 32.
    Bychkova AA, Soskov FV, Demchenko AI, Storozhenko PA, Muzafarov AM (2011) Condensation of methylphenylalkoxysilanes in an active medium as a selective method for synthesis of cyclic or linear methylphenylsiloxanes. Russ Chem Bull 6:2384–2389CrossRefGoogle Scholar
  33. 33.
    Milenin SA, Kalinina AA, Demchenko NV, Vasilenko NG, Muzafarov AM (2013) Synthesis of diethoxy(phenyl)silane and its polycondensation in acetic acid. Russ Chem Bull 62:705– 709CrossRefGoogle Scholar
  34. 34.
    Chojnowski J (1993) In: Clarson SJ, Semlyen JA (eds) Siloxane polymers, eds. Prentice Hall, Englewood CliffsGoogle Scholar
  35. 35.
    Semlyen JA (1993) In: Clarson SJ, Semlyen JA (eds) Siloxane polymers. Prentice Hall, Englewood CliffsGoogle Scholar
  36. 36.
    Khananashvili LM (1998) Khimiya i tekhnologiya elementoorganicheskikh monomerov i polimerov (Chemistry and Technology of Heteroelement-Containing Organic Monomers and Polymers) Khimiya. MoscowGoogle Scholar
  37. 37.
    Armaredo WLF, Perkin DD (2002) Purification of laboratory chemicals butterworth heinemann. OxfordGoogle Scholar
  38. 38.
    Toskas G, Moraeu M, Masure M, Sigwalt P (2001) Controlled Cationic Polymerization of Hexamethylcyclotrisiloxane. Macromol 34:4730–4736CrossRefGoogle Scholar
  39. 39.
    Rubinsztajn S, Cypryk M, Chojnowski J (1989) Condensation of model linear siloxane oligomers possessing silanol and silyl chloride end groups. The mechanism of silanol silylation by a chlorosilane in the presence of neutral nucleophiles. J Organomet Chem 367:27–37CrossRefGoogle Scholar
  40. 40.
    Mark EJ, Allcock H, West R (1992) Inorganic polymers. Prentice Hall, Englewood CliffsGoogle Scholar
  41. 41.
    Babu G, Christopher S, Newmark R (1987) Poly(dimethylsiloxane-co-diphenylsiloxanes): synthesis, characterization, and sequence analysis. Macromol 20:2654–2659CrossRefGoogle Scholar
  42. 42.
    Chojnowski J, Cypryk M, Kazmierski K, Rozga K (1990) The reactivity of monomeric silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in acidic media. J Sol-Gel Sci Technol 25:40–49Google Scholar
  43. 43.
    Kazmierski K, Chojnowski J, McVie J (1994) The acid-catalyzed condensation of methyl substituted model oligosiloxanes bearing silanol and ethoxysilane functions. Eur Polym J 30:515– 527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Aleksandra Kalinina
    • 1
    Email author
  • Natalia Strizhiver
    • 1
  • Natalia Vasilenko
    • 1
  • Nikolay Perov
    • 1
  • Nina Demchenko
    • 1
  • Aziz Muzafarov
    • 1
    • 2
  1. 1.Laboratory of the synthesis of organoelement polymers, N.S. Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Laboratory for organosilicon compounds, A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations