Advertisement

Silicon

, Volume 7, Issue 2, pp 165–176 | Cite as

Synthesis and Characterization of Organo-Inorganic Nanoobjects Based on Hyperbranched Polyethoxysiloxanes

  • Andrey S. ZhiltsovEmail author
  • Konstantin L. Boldyrev
  • Olga B. Gorbatsevitch
  • Valentina V. Kazakova
  • Nina V. Demchenko
  • Georgiy V. Cherkaev
  • Aziz M. Muzafarov
Original Paper

Abstract

The synthetic scheme for obtaining modified molecular silicasols based on hyperbranched polyethoxysiloxane (HPEOS) is presented in this work. The synthetic scheme includes several stages; the first and most important one represents polycyclization and simultaneous modification of HPEOS with either organosilanols or disiloxanes. The following stages are polymer-analogous reactions affecting only the external layer. The obtained nanoparticles are nanogels with specific morphology of inorganic silica core soluble in anhydrous organic solvents. All the hybrid systems were characterized by means of elemental analysis, GPC, IR and NMR spectroscopy. Some physical and chemical parameters were determined for all samples after fractionation. Synthesized molecular silicasols are ready-made universal models for investigations of interactions between macromolecules of polymer matrix and nanoparticles, and evaluation of various factors, such as the chemical nature of the external layer or particle core size, which have a great influence upon properties of nanocomposites.

Keywords

Hyperbranched polyethoxysiloxanes Core-shell systems molecular silicasols Molecular silica nanoparticles Nanocomposites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Summ BD, Ivanova NI (2000) Fields and methods of colloid chemistry in nanochemistry. Usp Khim 69:995–1008CrossRefGoogle Scholar
  2. 2.
    Allegra G, Raos G, Vacatello M (2008) Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement. Prog Polym Sci 33:683–731CrossRefGoogle Scholar
  3. 3.
    Zou H, Wu S, Shen J (2008) Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar
  4. 4.
    Tanahashi M (2010) Development of fabrication method of filler/polymer nanocomposites: With focus on simple melt-compounding–based approach without surface modification of nanofillers. Materials 3:1593–1619CrossRefGoogle Scholar
  5. 5.
    Qiao R, Deng H, Putz KW, Brinson LC (2011) Effect of Particle Agglomeration and Interphase on the Glass Transition Temperature of Polymer Nanocomposites. J Polym Sci B Polym Phys 49:740–748CrossRefGoogle Scholar
  6. 6.
    Aso O, Eguiazarbal JI, Nazarbal J (2007) The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Compos Sci Technol 67:2854–2863CrossRefGoogle Scholar
  7. 7.
    Bystrova AV, Voronina NV, Gaevoi NV, Getmanova EV, Meshkov VM, Gorbatsevich OB, Muzafarov AM, Ozerin AN, Egorova EV, Tatarinova EA (2008) Hyperbranched silicon-containing polymers and composites based on them: Synthesis and control of molecular parameters. Ross Nanotekhnol 3:42–46Google Scholar
  8. 8.
    Muzafarov AM, Vasilenko NG, Tatarinova EA, Ignat’eva GM, Myakushev VD, Obrezkova MA, Meshkov IB, Voronina NV, Novozhilov OV (2011) Macromolecular Nano-objects as a Promising Direction of Polymer Chemistry. Polym Sci series C 53:48–60CrossRefGoogle Scholar
  9. 9.
    Muzafarov AM, Vasilenko NG (2011) Dendrimers — a New Way to Organize Polymeric Matter. Priroda 6:3–10Google Scholar
  10. 10.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  11. 11.
    Voronina NV, Meshkov IB, Myakushev VD, Laptinskaya TV, Papkov VS, Buzin MI, Il’ina MN, Ozerin AN, Muzafarov AM (2010) Hybrid Organo-Inorganic Globular Nanospecies: Transition from Macromolecule to Particle. J Polym Sci A Polym Chem 48:4310–4322CrossRefGoogle Scholar
  12. 12.
    Takahara YK, Ikeda S, Ichino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsumura M, Ohtani B (2005) Asymmetrically Modified Silica Particles:? A Simple Particulate Surfactant for Stabilization of Oil Droplets in Water. J Am Chem Soc 127:6271–6275CrossRefGoogle Scholar
  13. 13.
    Zhang S-W, Zhou S-X, Weng Y-M, Wu L-M (2005) Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization. Langmuir 21:2124–2128CrossRefGoogle Scholar
  14. 14.
    Monteil V, Stumbaum J, Thomann R, Mecking S (2006) Silica/Polyethylene Nanocomposite Particles from Catalytic Emulsion Polymerization. Macromolecules 39:2056–2062CrossRefGoogle Scholar
  15. 15.
    Yang Y, Dan Y (2003) Preparation of PMMA/SiO2 composite particles via emulsion polymerization. Colloid Polym Sci 281:794–799CrossRefGoogle Scholar
  16. 16.
    Sondi I, Fedynyshyn TH, Sinta R, Matijevic E. (2000) Encapsulation of Nanosized Silica by in Situ Polymerization of tert-Butyl Acrylate Monomer. Langmuir 16:9031–9034CrossRefGoogle Scholar
  17. 17.
    Jal PK, Patel S, Michra VK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62:1005–1028CrossRefGoogle Scholar
  18. 18.
    Hao N, Bohning M, Schonhals A (2007) Dielectric Properties of Nanocomposites Based on Polystyrene and Polyhedral Oligomeric Phenethyl-Silsesquioxanes. Macromolecules 40:9672–9679CrossRefGoogle Scholar
  19. 19.
    Zhang Q, Archer LA (2002) Poly(ethylene oxide)/Silica Nanocomposites: Structure and Rheology. Langmuir 18:10435–10442CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Archer LA (2004) Optical Polarimetry and Mechanical Rheometry of Poly(ethylene oxide)-Silica Dispersions. Macromolecules 37:1928–1936CrossRefGoogle Scholar
  21. 21.
    Serenko OA, Shevchenko VG, Zhiltsov AS, Chuprakov VE, Zaderenko TV, Gritsenko OT, Mironova MV, Gorbatsevich OB, Kazakova VV, Kulichikhin VG, Muzafarov AM (2013) Structure and properties of composites based on polyethylene oxide and molecular silicasol. Nanotechnologies in Russia 8:81–91CrossRefGoogle Scholar
  22. 22.
    Zhiltsov AS, Meshkov IB, Kurkin TS, Gorbatsevich OB, Kazakova VV, Askadskii AA, Serenko OA, Ozerin AN, Muzafarov AM (2013) Structure of polylactide-modified silicasol nanocomposites based on thermodynamically compatible components. Nanotechnologies in Russia 8:644–654CrossRefGoogle Scholar
  23. 23.
    Kazakova VV, Rebrov EA, Myakushev VD, Strelkova TV, Ozerin AN, Ozerina LA, Chenskaya TB, Sheiko SS, Sharipov EY, Muzafarov AM (2000) From a hyperbranched polyethoxysiloxane toward molecular forms of silica: a polymer-based approach to the monitoring of silica properties. ACS Symposium Book Series 729:503–513CrossRefGoogle Scholar
  24. 24.
    Voronina NV, Meshkov IB, Myakouchev VD, Demchenko NV, Laptinskaya TV, Muzafarov AM (2008) Inorganic core/organic shell hybrid nanoparticles: Synthesis and characterization. Ross Nanotekhnol 3:321–329CrossRefGoogle Scholar
  25. 25.
    Meshkov IB, Kazakova VV, Gorbatcevich OB, Voronina NV, Myakouchev VD, Muzafarov AM (1152) Polym Prepr: 47Google Scholar
  26. 26.
    Kazakova VV, Zhiltsov AS, Gorbatsevitch OB, Meshkov IB, Pletneva MV, Demchenko NV, Cherkaev GV, Muzafarov GV (2012) Synthesis and characterization of hybrid core–shell systems based on molecular silicasols. J Inorg Organomet Polym Mater 22:564–576CrossRefGoogle Scholar
  27. 27.
    Masuhara E, Kojima K, Tarumi N, Hokoku SZK-J (1954) Report of the Research Institute of Dental Materials 2:18Google Scholar
  28. 28.
    Grubisic Z, Rempp R, Benoir H (1967) A universal calibration for gel permeation chromatography. J Polym Sci Ser B 5:753–759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Andrey S. Zhiltsov
    • 1
    • 2
    Email author
  • Konstantin L. Boldyrev
    • 1
  • Olga B. Gorbatsevitch
    • 1
  • Valentina V. Kazakova
    • 1
  • Nina V. Demchenko
    • 1
  • Georgiy V. Cherkaev
    • 1
  • Aziz M. Muzafarov
    • 1
    • 2
  1. 1.Laboratory of the Synthesis of Organoelement polymersN. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of SciencesMoscowRussian Federation
  2. 2.Laboratory for Organosilicon CompoundsA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations