Advertisement

Silicon

, Volume 7, Issue 2, pp 155–164 | Cite as

Synthesis of Carbosilane Dendrimers with 2-Phenylethyl End Groups and Influence of Generation Number on Glass Transition Temperature of PS-based Composites

  • Natalia A. NovozhilovaEmail author
  • Olga A. Serenko
  • Vjacheslav I. Roldughin
  • Andrey A. Askadskii
  • Aziz M. Muzafarov
Original Paper

Abstract

In this study we report the synthesis of carbosilane dendrimers of the 1 st, 3 rd and 6 th generations, containing 2 - phenylethyl external fragments in the outer layer. Also, we prepared composite materials from polystyrene and the obtained dendrimers. The composite glass transition temperature strongly depends on the generation number and the filler content. A previously developed theoretical model for the glass transition temperature change caused by nanosized filler of a core-shell type matches the experimental data.

Keywords

Dendrimer Glass transition Polystyrene Nanocomposite Core-shell particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muzafarov AM, Vasilenko NG, Tatarinova EA, Ignat’eva GM, Myakushev VD, Obrezkova MA, Meshkov IB, Voronina NV, Novozhilov OV (2011) Macromolecular nano-objects as a promising direction of polymer chemistry. Polym Sci Ser C 53:48–60CrossRefGoogle Scholar
  2. 2.
    Muzafarov AM, Vasilenko NG (2011) Dendrimers are a new way of polymeric organization. Priroda (Russ.Ed.) 6:3–10Google Scholar
  3. 3.
    Van der Made AW, van Leeuwen PWNM (1992) Silane dendrimers. J Chem Soc Chem Commun 19:1400–1401CrossRefGoogle Scholar
  4. 4.
    Zhou LL, Roovers J (1993) Synthesis of novel carbosilane dendritic macromolecules. Macromolecules 26:963–968CrossRefGoogle Scholar
  5. 5.
    Muzafarov AM, Gorbatsevich OB, Rebrov EA, Ignat’eva GM, Chenskaya TB, Myakushev VD, Bulkin AF, Papkov VS (1993) Organosilicon dendrimers: volume-growing polyallylcarbosilanes. Polym Sci 35:1575–1580Google Scholar
  6. 6.
    Tatarinova EA, Rebrov EA, Myakushev VD, Meshkov IB, Demchenko NV, Bystrova AV, Lebedeva OV, Muzafarov AM (2004) Synthesis and study of the properties of the homologous series of polyallylcarbosilane dendrimers and their nonfunctional analogs. Russ Chem Bull 53:2591–2600CrossRefGoogle Scholar
  7. 7.
    Seyferth D, Son DY, Rheingold AL, Ostrander RL (1994) Synthesis of an Organosilicon dendrimer containing 324 Si-H bonds. Organometallics 13:2682–2690CrossRefGoogle Scholar
  8. 8.
    Kim C, Son B, Kim B (1999) Dendritic carbosilanes containing hydroxy groups on the periphery. J Organomet Chem 588:1–8CrossRefGoogle Scholar
  9. 9.
    Lorenz K, Mulhaupt R, Frey H, Rapp U, Mayer-Posner FJ (1995) Carbosilane-based dendritic polyols. Macromolecules 28:6657–6661CrossRefGoogle Scholar
  10. 10.
    Getmanova EV, Tereshchenko AS, Ignat’eva GM, Tatarinova EA, Myakushev VD, Muzafarov AM (2004) Diphilic carbosilane dendrimers with different densities of the hydrophilic layer. Rus Chem Bull 53:137–143CrossRefGoogle Scholar
  11. 11.
    Novozhilova NA, Malakhova YuN, Buzin MI, Buzin AI, Tatarinova EA, Vasilenko NG, Muzafarov AM (2014, in press) Synthesis and properties of carbosilane dendrimers of the third and sixth generations with the ethylene oxide surface layer in bulk and at the air-water interface. Russ Chem BullGoogle Scholar
  12. 12.
    Sheremetyeva NA, Voronina NV, Bystrova AV, Myakushev VD, Buzin MI, Muzafarov AM (2010). In: Clarson SJ (ed) Fluorine-containing organosilicon polymers of different architectures. Synthesis and properties study. Advances in silicones and silicone-modified materials ACS symposium series 111—134Google Scholar
  13. 13.
    Shumilkina NA, Myakushev VD, Tatarinova EA, Buzin MI, Voronina NV, Laptinskaya TV, Gallyamov MO, Khokhlov AR, Muzafarov AM (2006) Synthesis and properties of fluorinated derivatives of carbosilane dendrimers of high generations. Polym Sci Ser A 48:1240–1247CrossRefGoogle Scholar
  14. 14.
    Tereshchenko AS, Tupitsyna GS, Tatarinova EA, Bystrova AV, Muzafarov AM, Smirnova NN, Markin AV (2010) Carbosilane dendrimers with diundecylsilyl, diundecylsiloxane and tetrasiloxane terminal groups: synthesis and properties. Polym Sci Ser B 52:41–48CrossRefGoogle Scholar
  15. 15.
    Ponomarenko SA, Boiko NI, Shibaev VP, Richardson IJ, Whitehouse IJ, Rebrov EA, Muzafarov AM (2000) Carbosilane liquid crystalline dendrimers: from molecular architecture to Supramolecular Nanostructures. Macromolecules 33:5549–5558CrossRefGoogle Scholar
  16. 16.
    Ponomarenko SA, Rebrov EA, Bobrovsky YuA, Boiko NI, Muzafarov AM, Shibaev VP (1996) Liquid Cristalline carbosilane dendrimers: first generation. Liq Cryst 21:1–12CrossRefGoogle Scholar
  17. 17.
    Ponomarenko SA, Rebrov EA Boiko NI, Muzafarov AM, Shibaev VP (1998) Synthesis of the first-fifth generations of carbosilane liquid- crystalline dendrimers containing terminal cyanobiphenyl groups. Polym Sci Ser A 40:763–768Google Scholar
  18. 18.
    Lebedev BV, Kulagina TG, Ryabkov MV, Ponomarenko SA, Makeev EA, Boiko NI, Shibaev VP, Rebrov EA, Muzafarov AM (2003) Carbosilane dendrimer of second generation with terminal methoxyundecylenate groups. J Therm Anal Calorim 71:481–492CrossRefGoogle Scholar
  19. 19.
    Comanita B, Roovers J (1999) Synthesis of new carbosilane dendrimers with hydrophilic ens-groups. Polyols. Des Monom Polym 2:111–124CrossRefGoogle Scholar
  20. 20.
    Lorenz K, Frey H, Stuhn B, Mulhaupt R (1997) Carbosilane dendrimers with perfluoroalkyl end groups. Core-shell macro molecules with generation-dependent order. Macromolecules 30:6860–6868CrossRefGoogle Scholar
  21. 21.
    Lorenz K, Holter D, Stuhn B, Mulhaupt R, Frey H (1996) A mesogen-fuctionalized carbosilane dendrimer: a dendritic liquid crystalline polymer. Adv Mater 8:414–416CrossRefGoogle Scholar
  22. 22.
    Krska SW, Seyferth D (1998) Synthesis of water-soluble carbosilane dendrimers. J Am Chem Soc 120:3604–3612CrossRefGoogle Scholar
  23. 23.
    Dvornic PR, Owen MJ (2009) Silicon-containing dendritic polymers. Springer, Guilford, UKCrossRefGoogle Scholar
  24. 24.
    Zhang J-F, Sun X (2004) Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer. Polym Int 53:716–722CrossRefGoogle Scholar
  25. 25.
    Zhao S, Zhou C, Zhang J, Wang J, Feng S (2006) Investigation of allyl-capped carbosilane dendrimers used as crosslinker for silicone rubber. J Appl Polym Sci 100:1772–1775CrossRefGoogle Scholar
  26. 26.
    Ujihara M, Imae T (2009) Hierarchical structures of dendritic polymers. Polym Int 59:137–144Google Scholar
  27. 27.
    Emran SK, Liu Y, Newkome GR, Harmon GP (2000) Viscoelastic Properties and Phase Behavior of 12-tert-Butyl Ester Dendrimer/Poly(methyl methacrylate) Blends. J Polym Sci Pol Phys 39:1381–1393CrossRefGoogle Scholar
  28. 28.
    Carr PL, Davies GR, Feast WJ, Stainton NM, Ward IM (1996) Dielectric and mechanical characterization of aryl ester dendrimer/PET blends. Polymer 37:2395–2401CrossRefGoogle Scholar
  29. 29.
    Klapper M, Clark CG, Jr Mullen, Mullen K (2008) Application-directed syntheses of surface-functionalized organic and inorganic nanoparticles. Polym Int 57:181–202CrossRefGoogle Scholar
  30. 30.
    Askadskii AA (1996) Physical properties of polymers - prediction and control. Gordon and Breach Publishers, AmsterdamGoogle Scholar
  31. 31.
    Askadskii AA (2003) Computational materials science of polymers. Cambridge International Science Publishing, CambridgeGoogle Scholar
  32. 32.
    Muzafarov AM, Gorbatsevich OB, Rebrov EA, Ignat’eva GM, Chenskaya TB, Myakushev VD, Bulkin AF, Papkov VS (1993) Organosilicon dendrimers: volume-growing polyallylcarbosilanes. Polym Sci 35:1575–1580Google Scholar
  33. 33.
    Ignat’eva GM, Rebrov EA, Myakushev VD, Chenskaya TB, Muzafarov AM (1997) Universal scheme for the synthesis of organosilicon dendrimers. Polym Sci Ser A 39:843–852Google Scholar
  34. 34.
    Ponomarenko SA, Rebrov EA, Boiko NI, Muzafarov AM, Shibaev VP (1998) Synthesis of the first-fifth generations of carbosilane liquid-crystalline dendrimers containing terminal cyanobiphenyl groups. Polym Sci Ser A 40:763–774Google Scholar
  35. 35.
    Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permearion chromatography. J Polym Sci Polym Lett 5:753–759CrossRefGoogle Scholar
  36. 36.
    Kim C, Jeong K, Jung I (2000) Progress toward limiting generation of dendritic ethynylsilanes (PhC ≡C)4-nMenSi (n =0-2). J Polym Sci Polym Chem 38:2749–2759CrossRefGoogle Scholar
  37. 37.
    Tatarinova EA, Voronina NV, Bystrova AV, Buzin MI, Muzafarov AM (2009) Synthesis and properties of homologous series of polyallylcarbosilane dendrimers with dense macromolecular structure. Macromol Sy 278:4–23Google Scholar
  38. 38.
    Roldugin VI, Serenko OA, Getmanova EV, Karmishina NA, Chvalun SN, Muzafarov AM (2013) Thermodynamic analysis of the glass transition temperatures of the polymer - hybrid nanoparticles systems. Docl Akad Nauk Phys Chem 449:83–86Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Natalia A. Novozhilova
    • 1
    Email author
  • Olga A. Serenko
    • 1
  • Vjacheslav I. Roldughin
    • 2
  • Andrey A. Askadskii
    • 3
  • Aziz M. Muzafarov
    • 1
  1. 1.N.S. Enikolopov Institute of Synthetic Polymeric Materials, a Foundation of the Russian Academy of SciencesMoscowRussia
  2. 2.A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, a Foundation of the Russian Academy of SciencesMoscowRussia
  3. 3.A.N. Nesmeyanov Institute of Organoelement Compounds, a Foundation of the Russian Academy of SciencesMoscowRussia

Personalised recommendations