Advertisement

Silicon

, Volume 6, Issue 4, pp 247–255 | Cite as

1 H and 29Si NMR Spectroscopy as a Powerful Analytical Tool to Evaluate the Activity of Various Platinum-Based Catalysts in Model Olefin Hydrosilylation

  • Valérie MeilleEmail author
  • Marie-Line Zanota
  • Fernande Da Cruz-Boisson
  • Cécile Chamignon
  • Sébastien Marrot
Original Paper

Abstract

The structure of polysiloxane copolymers obtained by hydrosilylation of 1-octene with polymethylhydrosiloxane (PMHS) was analyzed by 29Si NMR spectroscopy and revealed a tendency to form block copolymers. Although all the platinum catalysts that were used showed a tendency to form some block structures, only Karstedt catalyst led to well defined block copolymers. However, the tacticity of these copolymers could not be determined using Heteronuclear Multiple Bond Correlation (HMBC) 2D (1H/ 29Si) NMR technique. The following criteria were found to affect the structure of the hydrosilylation product: low SiH conversion, the “age” of the Karstedt catalyst (low TON) and high octene/SiH ratios.

Keywords

Microstructure PMHS Hydrosilylation 29Si NMR Neighboring effect Tacticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marciniec B (2009) Hydrosilylation: a comprehensive review on recent advances. SpringerGoogle Scholar
  2. 2.
    Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255(13–14):1440–1459CrossRefGoogle Scholar
  3. 3.
    Hofmann M, Eberle HJ (2006) Platinum catalysts that are supported on nanoscale titanium dioxide, use thereof in hydrosilylation, hydrosilylation method using said catalysts and compositions comprising said catalysts. WO Patent WO2006061138Google Scholar
  4. 4.
    Alonso F, Buitrago R, Moglie Y, Ruiz-Martinez J, Sepulveda-Escribano A, Yus M (2011) Hydrosilylation of alkynes catalysed by platinum on titania. J Organomet Chem 696(1):368–372CrossRefGoogle Scholar
  5. 5.
    Wawrzynczak A, Dutkiewicz M, Gulinski J, Maciejewski H, Marciniec B, Fiedorow R (2011) Hydrosilylation of n-alkenes and allyl chloride over platinum supported on styrene-divinylbenzene copolymer. Catal Today 169(1):69–74CrossRefGoogle Scholar
  6. 6.
    Schmid G, West H, Mehles H, Lehnert A (1997) Hydrosilation reactions catalyzed by supported bimetallic colloids. Inorg Chem 36(5):891–895CrossRefGoogle Scholar
  7. 7.
    Klein K, Knott W, Windbiel D (2000) Synergistic catalyst system and method for carrying out hydrosilylation reactions. Patent EP1031603Google Scholar
  8. 8.
    Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, Chirik PJ (2012) Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science (New York, NY) 335(6068):567–570CrossRefGoogle Scholar
  9. 9.
    Saxena A, Markanday M, Sarkar A, Yadav VK, Brar AS (2011) A systematic approach to decipher the microstructure of methyl hydrosiloxane copolymers and its impact on their reactivity trends. Macromolecules 44(16):6480–6487CrossRefGoogle Scholar
  10. 10.
    Kuwae Y, Kushibiki N (1989) NMR study on microstructure of polymer produced by hydrosilation of styrene with poly(hydrogenmethylsiloxane). J Polym Sci Part A: Polym Chem 27(12):3969–3975CrossRefGoogle Scholar
  11. 11.
    Cancouet P, Pernin S, Helary G, Sauvet G (2000) Functional polysiloxanes. II. neighboring effect in the hydrosilylation of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s by allylglycidylether. J Polym Sci Part A: Polym Chem 38(5):837–845CrossRefGoogle Scholar
  12. 12.
    Cancouet P, Daudet E, Helary G, Moreau M, Sauvet G (2000) Functional polysiloxanes. i. microstructure of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s obtained by cationic copolymerization. J Polym Science Part A: Polym Chem 38(5):826–836CrossRefGoogle Scholar
  13. 13.
    Marko IE, Sterin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq JP (2002) Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 298(5591):204–206CrossRefGoogle Scholar
  14. 14.
    Pelzer K, Hvecker M, Boualleg M, Candy JP, Basset JM (2011) Stabilization of 200-atom platinum nanoparticles by organosilane fragments. Angew Chem Int Ed 50(22):5170–5173CrossRefGoogle Scholar
  15. 15.
    Lewis LN, Lewis N (1986) Platinum-catalyzed hydrosilylation - colloid formation as the essential step. J Am Chem Soc 108(23):7228–7231CrossRefGoogle Scholar
  16. 16.
    Stein J, Lewis LN, Gao Y, Scott RA (1999) In situ determination of the active catalyst in hydrosilylation reactions using highly reactive pt(0) catalyst precursors. J Am Chem Soc 121(15):3693–3703CrossRefGoogle Scholar
  17. 17.
    Buisine O, Berthon-Gelloz G, Briere JF, Sterin S, Mignani G, Branlard P, Tinant B, Declercq JP, Marko IE (2005) Second generation n-heterocyclic carbenePt(0) complexes as efficient catalysts for the hydrosilylation of alkenes. Chem Commun 30:3856–3858CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Valérie Meille
    • 1
    Email author
  • Marie-Line Zanota
    • 1
  • Fernande Da Cruz-Boisson
    • 2
  • Cécile Chamignon
    • 3
  • Sébastien Marrot
    • 4
  1. 1.Laboratoire de Génie des Procédés Catalytiques UMR 5285 CNRS, CPE Lyon, Institut de Chimie de LyonUniversité de LyonVilleurbanne cedexFrance
  2. 2.CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Service RMN Polymères, INSA de Lyon, Institut de Chimie de LyonVilleurbanneFrance
  3. 3.CNRS, FR 3023, Service RMN Polymères, Institut de Chimie de LyonVilleurbanneFrance
  4. 4.Bluestar Silicones FranceSaint-FonsFrance

Personalised recommendations