, Volume 6, Issue 2, pp 117–121 | Cite as

Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures

  • Rajesh KumarEmail author
  • Gayatri Sahu
  • Shailendra K. Saxena
  • Hari M. Rai
  • Pankaj R. Sagdeo
Original Paper


A qualitative evolution of an asymmetric Raman line-shape function from a Lorentzian line-shape is discussed here for application in low dimensional semiconductors. The step-by-step evolution reported here is based on the phonon confinement model which is successfully used in literature to explain the asymmetric Raman line-shape from semiconductor nanostructures. Physical significance of different terms in the theoretical asymmetric Raman line-shape has been explained here. Better understanding of theoretical reasoning behind each term allows one to use the theoretical Raman line-shape without going into the details of theory from first principle. This will enable one to empirically derive a theoretical Raman line-shape function for any material if information about its phonon dispersion relation, size dependence, etc., is known.


Raman line-shape Phonon scattering Semiconductors Nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12633_2013_9176_MOESM1_ESM.pdf (164 kb)
(PDF 163 KB)


  1. 1.
    Raman C (1928) A new radiation. Indian J Phys 02:387Google Scholar
  2. 2.
    Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502. doi: 10.1038/121501c0 CrossRefGoogle Scholar
  3. 3.
    Barbagiovanni EG, Lockwood DJ, Simpson PJ, Goncharova LV (2012) Quantum confinement in Si and Ge nanostructures. J Appl Phys 111:034307. doi: 10.1063/1.3680884 CrossRefGoogle Scholar
  4. 4.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. doi: 10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  5. 5.
    Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414. doi: 10.1103/PhysRevB.64.075414 CrossRefGoogle Scholar
  6. 6.
    Hultman L, Robertsson A, Hentzell HTG et al (1987) Crystallization of amorphous silicon during thinfilm gold reaction. J Appl Phys 62:3647–3655. doi: 10.1063/1.339244 CrossRefGoogle Scholar
  7. 7.
    Vepek S, Iqbal Z, Sarott F-A (1982) A thermodynamic criterion of the crystalline-to-amorphous transition in silicon. Philos Mag Part B 45:137–145. doi: 10.1080/13642818208246392 CrossRefGoogle Scholar
  8. 8.
    Shuker R, Gammon RWRaman-scattering selection-rule breaking and the density of states in amorphous materials. Phys Rev Lett 25:222. doi: 10.1103/PhysRevLett.25.222
  9. 9.
    Sahu G, Joseph B, Lenka HP, Kuiri PK, Pradhan A, Mahapatra DP (2007) MeV Au irradiation induced nanoparticle formation and recrystallization in a low energy Au implanted Si layer. Nanotechnology 18:495702. doi: 10.1088/0957-4484/18/49/495702 CrossRefGoogle Scholar
  10. 10.
    Sahu G, Mahapatra DP (2011) Raman scattering study of Si nanoclusters formed in Si through a double Au implantation. MRS Proceedings Spring Meeting 1354. doi: 10.1557/opl.2011.1212
  11. 11.
    Sahu G, Kumar R, Mahapatra DP (2013) Raman Scattering and Backscattering Studies of Silicon Nanocrystals Formed Using Sequential Ion Implantation. Silicon 6:65. doi: 10.1007/s12633-013-9157-z
  12. 12.
    Sahu G (2013) Raman scattering study on sequentially Au implanted sample. AIP Conf Proc 1536:293. doi: 10.1063/1.4810216 CrossRefGoogle Scholar
  13. 13.
    Smith JE, Brodsky MH, Crowder BL et al (1971) Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors. Phys Rev Lett 26:642–646. doi: 10.1103/PhysRevLett.26.642 CrossRefGoogle Scholar
  14. 14.
    Temple PA, Hathaway CE (1973) Multiphonon Raman spectrum of silicon. Phys Rev B 7:3685–3697. doi: 10.1103/PhysRevB.7.3685 CrossRefGoogle Scholar
  15. 15.
    Kumar R, Mavi HS, Shukla AK (2010) Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films. Silicon 2:25–31. doi: 10.1007/s12633-009-9033-z CrossRefGoogle Scholar
  16. 16.
    Choi WK, Ng V, Ng SP et al (1999) Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing. J Appl Phys 86:1398. doi: 10.1063/1.370901 CrossRefGoogle Scholar
  17. 17.
    Serincan U, Kartopu G, Guennes A et al (2004) Characterization of Ge nanocrystals embedded in SiO2 by Raman spectroscopy. Semicond Sci Technol 19:247. doi: 10.1088/0268-1242/19/2/021 CrossRefGoogle Scholar
  18. 18.
    Li B, Yu D, Zhang S-L (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648. doi: 10.1103/PhysRevB.59.1645 CrossRefGoogle Scholar
  19. 19.
    Wang R, Zhou G, Liu Y et al (2000) Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys Rev B 61:16827–16832. doi: 10.1103/PhysRevB.61.16827 CrossRefGoogle Scholar
  20. 20.
    Piscanec S, Cantoro M, Ferrari AC et al (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312. doi: 10.1103/PhysRevB.68.241312 CrossRefGoogle Scholar
  21. 21.
    Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629. doi: 10.1016/0038-1098(81)90337-9 CrossRefGoogle Scholar
  22. 22.
    Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741. doi: 10.1016/0038-1098(86)90513-2 CrossRefGoogle Scholar
  23. 23.
    Gouadec G, Colomban P (2007) Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Ch 53:1–56. doi: 10.1016/j.pcrysgrow.2007.01.001 CrossRefGoogle Scholar
  24. 24.
    Tubino R, Piseri L, Zerbi G (1972) Lattice dynamics and spectroscopic properties by a valence force potential of diamondlike crystals: C, Si, Ge, and Sn. J Chem Phys 56:1022–1039. doi: 10.1063/1.1677264 CrossRefGoogle Scholar
  25. 25.
    Bergman L, Nemanich RJ (1996) Raman spectroscopy for characterization of hard, wide-bandgap semiconductors: diamond, GaN, GaAlN, AlN, BN. Annu Rev Mater Sci 26:551–579. doi: 10.1146/ CrossRefGoogle Scholar
  26. 26.
    Mavi HS, Islam SS, Kumar R, Shukla AK (2006) Spectroscopic investigation of porous GaAs prepared by laser-induced etching. J Non-Cryst Solids 352:2236–2242. doi: 10.1016/j.jnoncrysol.2006.02.046 CrossRefGoogle Scholar
  27. 27.
    Mavi HS, Prusty S, Kumar M et al (2006) Formation of Si and Ge quantum structures by laser-induced etching. Phys Status Solidi A-Appl Mat 203:2444–2450. doi: 10.1002/pssa.200521027 CrossRefGoogle Scholar
  28. 28.
    Pivac B, Furi K, Desnica D et al (1999) Raman line profile in polycrystalline silicon. J Appl Phys 86:4383. doi: 10.1063/1.371374 CrossRefGoogle Scholar
  29. 29.
    Prusty S, Mavi HS, Shukla AK (2005) Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity. Phys Rev B 71:113313. doi: 10.1103/PhysRevB.71.113313 CrossRefGoogle Scholar
  30. 30.
    Konstantinovic MJ, Bersier S, Wang X et al (2002) Raman scattering in cluster-deposited nanogranular silicon films. Phys Rev B 66:161311. doi: 10.1103/PhysRevB.66.161311 CrossRefGoogle Scholar
  31. 31.
    Piscanec S, Ferrari AC, Cantoro M et al (2003) Raman spectrum of silicon nanowires. Mater Sci Eng C 23:931–934. doi: 10.1016/j.msec.2003.09.084 CrossRefGoogle Scholar
  32. 32.
    Brockhouse BN (1959) Lattice vibrations in silicon and germanium. Phys Rev Lett 2:256–258. doi: 10.1103/PhysRevLett.2.256 CrossRefGoogle Scholar
  33. 33.
    Kumar R, Mavi HS, Shukla AK, Vankar VD (2007) Photoexcited Fano interaction in laser-etched silicon nanostructures. J Appl Phys 101:064315. doi: 10.1063/1.2713367 CrossRefGoogle Scholar
  34. 34.
    Kumar R, Shukla AK (2009) Quantum interference in the Raman scattering from the silicon nanostructures. Phys Lett A 373:2882–2886. doi: 10.1016/j.physleta.2009.06.005 CrossRefGoogle Scholar
  35. 35.
    Shukla AK, Kumar R, Kumar V (2010) Electronic Raman scattering in the laser-etched silicon nanostructures. J Appl Phys 107:014306. doi: 10.1063/1.3271586 CrossRefGoogle Scholar
  36. 36.
    Kumar R, Shukla AK, Mavi HS, Vankar VD (2008) Size-dependent Fano interaction in the laser-etched silicon nanostructures. Nanoscale Res Lett 3:105–108. doi: 10.1007/s11671-008-9120-x CrossRefGoogle Scholar
  37. 37.
    Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys. A 85:287–297. doi: 10.1007/s00339-006-3716-8 CrossRefGoogle Scholar
  38. 38.
    Adu KW, Gutierrez HR, Kim UJ, Sumanasekera GU, Eklund PC (2005) Confined phonons in Si nanowires. Nanoletters 5:409–414. doi: 10.1021/nl048625 CrossRefGoogle Scholar
  39. 39.
    Adu KW, Gutirrez HR, Kim UJ, Eklund PC (2006) Inhomogeneous laser heating and phonon confinement in silicon nanowires: a micro-Raman scattering study. Phys Rev B 73:155333. doi: 10.1103/PhysRevB.73.155333 CrossRefGoogle Scholar
  40. 40.
    Gupta R, Xiong Q, Adu CK et al (2003) Laser-induced Fano resonance scattering in silicon nanowires. Nano Lett 3:627–631. doi: 10.1021/nl0341133 CrossRefGoogle Scholar
  41. 41.
    Kumar R, Shukla AK (2008) Temperature dependent phonon confinement in silicon nanostructures. Phys Lett 373:133–135. doi: 10.1016/j.physleta.2008.10.090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rajesh Kumar
    • 1
    • 2
    • 3
    Email author
  • Gayatri Sahu
    • 1
  • Shailendra K. Saxena
    • 1
  • Hari M. Rai
    • 1
  • Pankaj R. Sagdeo
    • 1
    • 2
  1. 1.Discipline of PhysicsSchool of Basic Sciences, Indian Institute of Technology IndoreIndoreIndia
  2. 2.Disciplne of Surface Science and EngineeringIndian Institute of Technology IndoreIndoreIndia
  3. 3.Discipline of Bioscience and BioengineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations