Silicon

, Volume 6, Issue 1, pp 57–63 | Cite as

Silane-Treated E-Glass Fiber-Reinforced Telechelic Macromer-Based Polymer-Matrix Composites

  • Mervi Puska
  • Meng Zhang
  • Jukka P. Matinlinna
  • Pekka K. Vallittu
Original Paper

Abstract

The aim of this in vitro study was to investigate the water sorption and flexural properties of fiber reinforced composites (FRC) prepared from telechelic macromer extended urethane dimethacrylate (PEG-400-E-UEDMA)(PEG), hydroxypropyl methacrylate (HPMA) and E-glass fibers. Three experimental groups of test specimens based on poly(PEG-400-E-UEDMA-HPMA) polymer matrices and continuous unidirectional E-glass fibers were light polymerized and stored in deionized water for 0, 4, 12 or 24 weeks. The weight ratios (%) of PEG-HPMA were 27.5–70.5, 49.0–49.0 and 70.5–27.5 with an initiator-activator percentage of 1.0–1.0. After each time period of storage the water absorption and flexural properties were measured. There were six test specimens in each of the test groups (N = 6) and the specimen’s fracture surfaces were analyzed using scanning electron microscopy (SEM). All the PEG-HPMA groups exhibited the highest water absorption at the time point of two days (5.5 to 6.4 %), which thereafter decreased to the level of 3.8–4.7 % at the time point of 30 days. The flexural strength varied from dry specimens’ 128 to 283 MPa to the 30 days water-stored specimens’ of 30 to 49 MPa. The flexural modulus exhibited values from 7.9 to 14.8 GPa (dry specimens) and ca. 0.5 to 1.8 GPa after 30 days of water-storage. Both the flexural strength and modulus decrease dramatically with a longer water storage time. The SEM images showed good adhesion between the fibers and the resin matrix. In the wet conditions, the telechelic macromer based hydrophilic PEG polymer-matrix FRCs formed a plasticized composite that decreased the flexural properties.

Keywords

Fiber reinforced composite PEG 400 extended urethane dimethacrylate Water sorption Telechelic macromers based polymer-matrix E-glass fibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang M, Matinlinna JP (2012) Silicon 4:73–78CrossRefGoogle Scholar
  2. 2.
    Vallittu P (1999) J Prosthet Dent 81:318–326CrossRefGoogle Scholar
  3. 3.
    Li Z-F, Dibenedetto AT, Jancar J, Goldberg J (1995) J Adhesion 50(4):249–264CrossRefGoogle Scholar
  4. 4.
    Segerström S (2009) Carbon-graphite fiber-reinforced polymers for implant suprastructures. PhD Thesis, Karolinska Instituet, StockholmGoogle Scholar
  5. 5.
    Lung CYK, Matinlinna JP (2012) Dent Mater 28(5):467–477CrossRefGoogle Scholar
  6. 6.
    Puska M, Lassila L, Närhi T, Yli-Urpo A, Vallittu P (2004) Appl Compos Mater 11:17–31CrossRefGoogle Scholar
  7. 7.
    Vallittu P (1996) J Prosthodont 5:270–276CrossRefGoogle Scholar
  8. 8.
    Plueddemann EP, Clark HA, Nelson LE, Hoffman KR (1962) Modern Plast 39:135–193Google Scholar
  9. 9.
    Murphy J (1998) Physical properties of laminates: strength prediction. In: Reinforced plastics handbook, 2nd edn. Elsevier, Oxford, pp 264–265Google Scholar
  10. 10.
    Lahdenperä M, Puska M, Alander P, Waltimo T, Vallittu P (2004) J Mater Sci Mater Med 15:1349–1353CrossRefGoogle Scholar
  11. 11.
    So YC, Matinlinna JP, Tsoi JKH (2012) Silicon 4:209–220CrossRefGoogle Scholar
  12. 12.
    Schweikl H, Spagnuolo G, Schmalz G (2006) J Dent Res 85(10):870–877CrossRefGoogle Scholar
  13. 13.
    Tuusa S, Puska M, Lassila L, Vallittu P (2005) J Mater Sci Mater Med 16:15–20CrossRefGoogle Scholar
  14. 14.
    Zhang M, Matinlinna JP (2011) J Adhes Sci Technol 25:2687–2701CrossRefGoogle Scholar
  15. 15.
    Puska M, Lassila L, Vallittu P, Seppälä J, Matinlinna J (2009) J Adhes Sci Technol 23:991–1006CrossRefGoogle Scholar
  16. 16.
    Henschke O, Neubauer A, Arnold M (1997) Macromol 30(26):8097–8100CrossRefGoogle Scholar
  17. 17.
    Shiho H, Desimone JM (2000) J Polymer Sci Polymer Chem 38(7):1139–1145CrossRefGoogle Scholar
  18. 18.
    Bell-Rönnlöf A-ML (2007) Fiber-reinforced composites as root canal posts. PhD Thesis, The University of Turku, TurkuGoogle Scholar
  19. 19.
    Brown R (2002) Handbook of polymer testing: short-term mechanical tests. iSmithers, ShawburyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mervi Puska
    • 1
    • 2
    • 3
  • Meng Zhang
    • 2
  • Jukka P. Matinlinna
    • 2
  • Pekka K. Vallittu
    • 1
  1. 1.Institute of Dentistry, Turku Clinical Biomaterial Centre (TCBC) and BioCity Turku Biomaterials Research ProgramTurkuFinland
  2. 2.Faculty of Dentistrythe University of Hong KongHong KongPeople’s Republic of China
  3. 3.Nordic Institute of Dental Materials – NIOMUniversity of OsloOsloNorway

Personalised recommendations