Advertisement

Silicon

, Volume 5, Issue 4, pp 255–262 | Cite as

Paramagnetic Silicon Nanoparticles Without Magnetic Ion Doping: An Ab-Initio Study Prediction

  • Priya Francis
  • S. V. GhaisasEmail author
Original Paper

Abstract

Finite magnetic moments in Si-H nanoparticles (NPs) without magnetic ion doping were observed due to the presence of dangling bonds. Ab-initio methods were employed to investigate the electronic and magnetic properties of such Si-H NPs. It is shown that Si10H15, Si10H14, Si10H13 and the corresponding large size NPs Si20H35, Si20H34 and Si20H33 exhibit 1, 2 and 3 μ B magnetic moments, respectively with a relatively large exchange splitting. It is proposed that paramagnetic materials can be formed by assembling such NPs. Appropriate combinations of these NPs with other NPs or molecules can protect the dangling bond and preserve the magnetic moment.The stability of these paramagnetic Si-H NPs in the presence of water and oxygen is also discussed.

Keywords

Silicon nanoparticles Paramagnetism Dangling bonds Density functional studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saito T, Hamane DN, Yoshii S, Nojima T (2011) Appl Phys Lett 98:052506–3Google Scholar
  2. 2.
    Makarova T, Palacio F (2006) Carbon based magnetism: an overview of the magnetism of metal free carbon-based compounds and materials. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Esquinazi P, Spemann D, Höhne R, Setzer A, Han KH, Butz T (2003) Phys Rev Lett 91:227201–4CrossRefGoogle Scholar
  4. 4.
    Peng C, Liang Y, Wang K, Zhang Y, Zhao G, Wang Y (2012) J Phys Chem C 116:9709–15Google Scholar
  5. 5.
    Bandaru PR, Park J, Lee JS, Tang YJ, Chen L-H, Jin S, Song SA, Brien JRO (2006) Appl Phy Lett 89:112502–3CrossRefGoogle Scholar
  6. 6.
    Zheng HW, Wang ZQ, Liu XY, Diao CL, Zhang HR, Gu YZ (2011) Appl Phy Lett 99:222512–3Google Scholar
  7. 7.
    Guo L, Zheng X, Zeng Z (2011) Phys Lett A 375:4209–4213CrossRefGoogle Scholar
  8. 8.
    Bolduc M, Awo-Affouda C, Stollenwerk A, Huang MB, Ramos FG, Agnello G, LaBella VP (2005) Phys Rev B 71:033302–4CrossRefGoogle Scholar
  9. 9.
    Leitsmann R, Panse C, Küwen F, Bechstedt F (2009) Phys Rev B 80:104412–10Google Scholar
  10. 10.
    Bahramy MS, Kumar V, Kawazoe Y (2009) Phys Rev B 79:235443–7CrossRefGoogle Scholar
  11. 11.
    Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY (2010) J Am Chem Soc 132:2016–2023CrossRefGoogle Scholar
  12. 12.
    Zhang X, Brynda M, Britt RD, Carroll E, Larsen DS, Louie AY, Kauzlarich SM (2007) J Am Chem Soc 129:10668–10669CrossRefGoogle Scholar
  13. 13.
    Kaneko T, Takaya H, Hatakeyama R (2006) Appl Phys Lett 89:241501–3CrossRefGoogle Scholar
  14. 14.
    Nakamura KG, Ishioka AK, Kitajima M, Murakami K (1997) Solid State Commun 101:735–738CrossRefGoogle Scholar
  15. 15.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  16. 16.
    Kresse G, Furthmüller J (1996) Comput Mat Sci 6:15–50CrossRefGoogle Scholar
  17. 17.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  18. 18.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  19. 19.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  20. 20.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207–8215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Electronic ScienceUniversity of PunePuneIndia

Personalised recommendations